• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Densidade espectral para o modelo de Anderson de duas impurezas sem correlação eletrônica / Spectral density for the two-impurity Anderson model without electronic correlation

Silva, Marcelo Ferreira da 27 March 1998 (has links)
Este trabalho calcula analítica e numericamente a densidade espectral para o modelo de Anderson de duas impurezas sem correlação eletrônica (U=0). Nossos resultados servem como passo inicial para se entender o modelo com a correlação eletrônica. O modelo estudado descreve a interação entre elétrons de um metal e impurezas magnéticas localizadas, e a simplificação, U = 0, torna o Hamiltoniano quadrático permitindo assim que se divida o mesmo em dois termos: um envolvendo apenas operadores pares (canal par) e outro envolvendo apenas operadores ímpares (canal ímpar). Cada termo encontrado difere pouco do Hamiltoniano de Nível Ressonante. Nossos resultados abrangem tanto a diagonalização analítica como a numérica pelo método do Grupo de Renormalização, adaptado para o caso de duas impurezas. A simplicidade do Hamiltoniano permite que (1) se identifique características do modelo que afetam adversamente a precisão do cálculo numeríco e (2) se encontre uma maneira de circundar tais dificuldades. Os resultados aqui encontrados ajudaram o desenvolvimento do cálculo da densidade espectral do modelo correlacionado, desenvolvido paralelamente em nosso grupo de pesquisa. / This work calculates analytically and numerically the spectral density for the two impurity uncorrelated Anderson model (U = O). Our results serve as an initial step towards understanding models with electronic correlation. The studied model describes the interaction between conduction-band electrons of a metal and localized magnetic impurities. The simplification U = O turns the Hamiltonian quadratic, allowing us to split it into two parts: one involving only even operators (even channel), the other involving odd operators (odd channel). Each term has a form differing a little from that for the Resonant Level Hamiltonian. Our results include analytic diagonalization as well as numerical calculations using the method of the Renormalization Group, adapted for the two impurity case. The traditional tridiagonalization method imposes particle-hole symmetry, while our treatment preserves the energy dependence of the coupling, between the impurities and the conduction-band, and consequently, the natural asymmetry of the model. The simplicity of the Hamiltonian allowed us to (1) identify characteristics of the model that affect adversely the acuracy of the numeric calculation and (2) find a way to surround such difficulties. The results here found helped the development of the calculation of the spectral density of the correlated model, developed simultaneously in our research group.
2

Densidade espectral para o modelo de Anderson de duas impurezas sem correlação eletrônica / Spectral density for the two-impurity Anderson model without electronic correlation

Marcelo Ferreira da Silva 27 March 1998 (has links)
Este trabalho calcula analítica e numericamente a densidade espectral para o modelo de Anderson de duas impurezas sem correlação eletrônica (U=0). Nossos resultados servem como passo inicial para se entender o modelo com a correlação eletrônica. O modelo estudado descreve a interação entre elétrons de um metal e impurezas magnéticas localizadas, e a simplificação, U = 0, torna o Hamiltoniano quadrático permitindo assim que se divida o mesmo em dois termos: um envolvendo apenas operadores pares (canal par) e outro envolvendo apenas operadores ímpares (canal ímpar). Cada termo encontrado difere pouco do Hamiltoniano de Nível Ressonante. Nossos resultados abrangem tanto a diagonalização analítica como a numérica pelo método do Grupo de Renormalização, adaptado para o caso de duas impurezas. A simplicidade do Hamiltoniano permite que (1) se identifique características do modelo que afetam adversamente a precisão do cálculo numeríco e (2) se encontre uma maneira de circundar tais dificuldades. Os resultados aqui encontrados ajudaram o desenvolvimento do cálculo da densidade espectral do modelo correlacionado, desenvolvido paralelamente em nosso grupo de pesquisa. / This work calculates analytically and numerically the spectral density for the two impurity uncorrelated Anderson model (U = O). Our results serve as an initial step towards understanding models with electronic correlation. The studied model describes the interaction between conduction-band electrons of a metal and localized magnetic impurities. The simplification U = O turns the Hamiltonian quadratic, allowing us to split it into two parts: one involving only even operators (even channel), the other involving odd operators (odd channel). Each term has a form differing a little from that for the Resonant Level Hamiltonian. Our results include analytic diagonalization as well as numerical calculations using the method of the Renormalization Group, adapted for the two impurity case. The traditional tridiagonalization method imposes particle-hole symmetry, while our treatment preserves the energy dependence of the coupling, between the impurities and the conduction-band, and consequently, the natural asymmetry of the model. The simplicity of the Hamiltonian allowed us to (1) identify characteristics of the model that affect adversely the acuracy of the numeric calculation and (2) find a way to surround such difficulties. The results here found helped the development of the calculation of the spectral density of the correlated model, developed simultaneously in our research group.
3

Tunelamento assistido em metais / Assisted tunneling in metals

Ramos, Luís Roberto 06 April 1998 (has links)
Este trabalho mostra um modelo onde um íon sem spin tunela entre dois mínimos de potencial em um metal e interage eletrostaticamente com os elétrons de condução. Este modelo foi proposto por Kondo em 1976, sendo que ele não considerou a possibilidade do tune1amento ocorrer via espalhamento dos elétrons de condução. Este processo é conhecido como tunelamento assistido, e neste trabalho, nós o estamos levando em consideração. Para diagonalizar o Hamiltoniano que representa o modelo nós utilizamos o Grupo de Renormalização Numérico. Estamos mostrando o calor específico como função da temperatura no caso onde não há tunelamento assistido e no caso onde ele está presente. Este trabalho mostra, também, que para uma escolha apropriada de parâmetros, este modelo é mapeado no famoso Hamiltoniano de Kondo para uma impureza magnética em metal. Mostramos, ainda, o comportamento da taxa efetiva de tunelamento em função do parâmetro que representa o tunelamento assistido. Em especial, verifica-se que essa taxa pode, em alguns casos, ser maior que a taxa de tunelamento livre. / This work shows a model where a spinless ion tunnels between a double potential well in a metal and interacts eletrostatically with the electrons of conduction bando This model was proposed by Kondo in 1976, but he did not consider the possibility of a tunneling caused by a scattering of conduction electron. This process is called assisted tunneling, and in this work, we take it into account. Numerical Renormalization Group is used to diagonalize the Hamiltonian representing the model. We are showing here curves of specific heat as a function of temperature in the case where there is no assisted tunneling and in the case where it is present. This work also shows that for an appropriate choice of parameters this model maps in the famous Kondo Hamiltonian for a magnetic impurity in metal. Finally, we are showing the behavior of the effective tunneling rate as a function of the parameter that represent the assisted tunneling. In special, the results show that the rate may be, in some cases, larger that the bare tunneling rate.
4

Densidade espectral no Modelo de Kondo de Tunelamento / Spectral density for the tunneling Kondo Model

Santos, Silvia Martins dos 20 March 1997 (has links)
Utilizando o grupo de Renormalização Numérico, técnica criada por Wilson (1975) para o estudo do problema de uma impureza magnética em metal não magnético, foi calculada a densidade espectral no Modelo de Kondo deTunelamento, que consiste em duas impurezas, interagentes, localizadas em posições fixas num metal e separados por uma distância R. Os níveis de energia destas impurezas são degenerados e, portanto, um buraco criado em uma delas, tunela entre os dois níveis de energia de impurezas com uma taxa de tunelamento &#916. A simetria de inversão, presente no problema, possibilita a separação de densidade espectral em duas partes, uma correspondendo à evolução do buraco criado no orbital ligante, chamada densidade espectral par e outra correspondendo à evolução do buraco criado no orbital anti-ligante, chamada densidade espectral ímpar. O comportamento das curvas, em certos limites, obedece a lei de potência proposta por Doniach e Sünji(C com acento agudo) [6], cujos expoentes podem ser encontrados em termos das defasagem da banda de condução. O estudo deste problema já foi feito anteriormente, mas sem explorar uma lei de conservação existente no problema, a conservação da paridade. Este número quântico adicional (paridade) permite uma diagonalização numérica mais eficiente e portanto permite que se explore melhor o espaço de parâmetros do modelo. / Using the Numerical Renormalization Group, a technique created by Wilson (1975), to study the problem of one magnetic impurity in a non-magnetic metal the spectral density in the Kondo Tunneling Model was calculated. This model consists of two interacting impurities located at fixed positions in a metal, separated by a distance R. Since the energy levels of such impurities are degenerate, a hole, which is created in one of them, can tunnel between the two levels at a rate &#916. The inversion symmetry of the problem allows the spectral density to be split in two parts. One of them describes the evolution of the hole created in the bonding orbital the even spectral density, and the other describe the evolution of the hole created in the anti-bonding orbital, the odd spectral density. The behavior of the curves obtained obeys, certain limits being taken, the power law proposed by Doniach and Sunjic whose exponents can be found in terms of the phase shifts of the conduction band. This problem has been studied previously. However, parity conservation was not exploited in such study. This quantum number, taken into account in the present work, allows for more efficient numerical diagonalization and thus a better study of the model\'s parameter space.
5

Molecular-dynamics Investigation Of The Dynamic Properties Of Pd And Al Metals, And Their Alloys

Coruh, Ali 01 February 2003 (has links) (PDF)
The dynamic properties of Palladium (Pd) and Aluminum (Al) metals and their alloys are investigated by means of Molecular Dynamics using the Quantum Sutton-Chen force field in five different concentrations. Calculations have been carried out for liquid structures. Although this study is done for liquid structures, basic solid state properties are also investigated to prove the validity of potential parameters. Results are compared with each other and with experimental, theoretical and simulated results. Liquid state transferability of Quantum Sutton-Chen parameters have been investigated and discussed. High temperature properties, which are not easy to work experimentally, are simulated and high temperature behavior of Pd-Al alloy is investigated.
6

Densidade espectral no Modelo de Kondo de Tunelamento / Spectral density for the tunneling Kondo Model

Silvia Martins dos Santos 20 March 1997 (has links)
Utilizando o grupo de Renormalização Numérico, técnica criada por Wilson (1975) para o estudo do problema de uma impureza magnética em metal não magnético, foi calculada a densidade espectral no Modelo de Kondo deTunelamento, que consiste em duas impurezas, interagentes, localizadas em posições fixas num metal e separados por uma distância R. Os níveis de energia destas impurezas são degenerados e, portanto, um buraco criado em uma delas, tunela entre os dois níveis de energia de impurezas com uma taxa de tunelamento &#916. A simetria de inversão, presente no problema, possibilita a separação de densidade espectral em duas partes, uma correspondendo à evolução do buraco criado no orbital ligante, chamada densidade espectral par e outra correspondendo à evolução do buraco criado no orbital anti-ligante, chamada densidade espectral ímpar. O comportamento das curvas, em certos limites, obedece a lei de potência proposta por Doniach e Sünji(C com acento agudo) [6], cujos expoentes podem ser encontrados em termos das defasagem da banda de condução. O estudo deste problema já foi feito anteriormente, mas sem explorar uma lei de conservação existente no problema, a conservação da paridade. Este número quântico adicional (paridade) permite uma diagonalização numérica mais eficiente e portanto permite que se explore melhor o espaço de parâmetros do modelo. / Using the Numerical Renormalization Group, a technique created by Wilson (1975), to study the problem of one magnetic impurity in a non-magnetic metal the spectral density in the Kondo Tunneling Model was calculated. This model consists of two interacting impurities located at fixed positions in a metal, separated by a distance R. Since the energy levels of such impurities are degenerate, a hole, which is created in one of them, can tunnel between the two levels at a rate &#916. The inversion symmetry of the problem allows the spectral density to be split in two parts. One of them describes the evolution of the hole created in the bonding orbital the even spectral density, and the other describe the evolution of the hole created in the anti-bonding orbital, the odd spectral density. The behavior of the curves obtained obeys, certain limits being taken, the power law proposed by Doniach and Sunjic whose exponents can be found in terms of the phase shifts of the conduction band. This problem has been studied previously. However, parity conservation was not exploited in such study. This quantum number, taken into account in the present work, allows for more efficient numerical diagonalization and thus a better study of the model\'s parameter space.
7

Tunelamento assistido em metais / Assisted tunneling in metals

Luís Roberto Ramos 06 April 1998 (has links)
Este trabalho mostra um modelo onde um íon sem spin tunela entre dois mínimos de potencial em um metal e interage eletrostaticamente com os elétrons de condução. Este modelo foi proposto por Kondo em 1976, sendo que ele não considerou a possibilidade do tune1amento ocorrer via espalhamento dos elétrons de condução. Este processo é conhecido como tunelamento assistido, e neste trabalho, nós o estamos levando em consideração. Para diagonalizar o Hamiltoniano que representa o modelo nós utilizamos o Grupo de Renormalização Numérico. Estamos mostrando o calor específico como função da temperatura no caso onde não há tunelamento assistido e no caso onde ele está presente. Este trabalho mostra, também, que para uma escolha apropriada de parâmetros, este modelo é mapeado no famoso Hamiltoniano de Kondo para uma impureza magnética em metal. Mostramos, ainda, o comportamento da taxa efetiva de tunelamento em função do parâmetro que representa o tunelamento assistido. Em especial, verifica-se que essa taxa pode, em alguns casos, ser maior que a taxa de tunelamento livre. / This work shows a model where a spinless ion tunnels between a double potential well in a metal and interacts eletrostatically with the electrons of conduction bando This model was proposed by Kondo in 1976, but he did not consider the possibility of a tunneling caused by a scattering of conduction electron. This process is called assisted tunneling, and in this work, we take it into account. Numerical Renormalization Group is used to diagonalize the Hamiltonian representing the model. We are showing here curves of specific heat as a function of temperature in the case where there is no assisted tunneling and in the case where it is present. This work also shows that for an appropriate choice of parameters this model maps in the famous Kondo Hamiltonian for a magnetic impurity in metal. Finally, we are showing the behavior of the effective tunneling rate as a function of the parameter that represent the assisted tunneling. In special, the results show that the rate may be, in some cases, larger that the bare tunneling rate.
8

Dimensions et régularité directionnelles du courant de Green / Directional dimensions and regularity of the Green current

Rogue, Axel 16 October 2017 (has links)
Cette thèse concerne les propriétés dynamiques des endomorphismes holomorphes du plan projectif complexe. La première partie introduit et minore les dimensions directionnelles du courant de Green. Nos résultats mènent une analyse multifractale des tranches de ce courant par des coordonnées locales, relativement aux mesures ergodiques dilatantes. Une première application montre que, relativement à toute mesure ergodique de grande entropie, tout courant positif fermé possède une dimension directionnelle strictement plus grande que deux, ce qui répond à une question de de Thélin-Vigny. Comme deuxième application, nous décrivons les dimensions directionnelles du courant de Green des endomorphismes semi-extrémaux de Dujardin, c'est à dire ceux dont la mesure d'équilibre est absolument continue par rapport à la mesure trace du courant de Green. Dans la deuxième partie, nous majorons les dimensions directionnelles du courant de Green en utilisant des techniques de Théorie du pluripotentiel. En combinant ces résultats à ceux de la première partie, nous montrons une propriété de séparation des dimensions directionnelles du courant de Green relativement à la mesure d'équilibre. Dans la dernière partie, nous étudions la régularité des tranches du courant de Green dans deux situations semi-extrémales. Nous montrons que la dérivée de Radon-Nikodym des tranches stables est bornée presque partout. Cette propriété, proche de l'absolue continuité par rapport à la mesure de Lebesgue, apporte une précision à nos résultats précédents. Les techniques utilisées ont également permis d'obtenir une nouvelle majoration de la dimension locale des mesures ergodiques dilatantes. Cette majoration nous rapproche de la conjecture de Binder-DeMarco concernant la dimension de la mesure d'équilibre. / This thesis studies the dynamical properties of holomorphic endomorphisms of the complex projective plane. The first part introduces and proves lower bounds for the directional dimensions of the Green current. We give there a multifractal analysis of the slices of that current by local coordinates, with respect to dilating ergodic measures. A first application shows that, with respect to every measure of large entropy, every closed positive current has a directional dimension strictly larger than two, which answers a question by de Thélin and Vigny. A second application describes the directional dimensions of the Green current of Dujardin's semi-extremal endomorphisms, which have an equilibrium measure absolutely continuous with respect to the trace measure of the Green current. The second part provides upper bounds for the directional dimensions of the Green current by using Pluripotential Theory. Combining these results with those of the first part, we obtain a separation property of the directional dimensions of the Green current with respect to the equilibrium measure. In the last part, we focus on the regularity of one-dimensional slices of the Green current in two semi-extremal situations. We show that the Radon-Nikodym derivative of the stable slices is bounded almost everywhere. This property is close to the absolute continuity with respect to the Lebesgue measure, and specifies our previous results. Our methods also allow to prove an upper bound for the local dimension of dilating ergodic measures, which is a new step towards Binder-DeMarco's conjecture concerning the dimension of the equilibrium measure.
9

Balancing Privacy and Accuracy in IoT using Domain-Specific Features for Time Series Classification

Lakhanpal, Pranshul 01 June 2023 (has links) (PDF)
ε-Differential Privacy (DP) has been popularly used for anonymizing data to protect sensitive information and for machine learning (ML) tasks. However, there is a trade-off in balancing privacy and achieving ML accuracy since ε-DP reduces the model’s accuracy for classification tasks. Moreover, not many studies have applied DP to time series from sensors and Internet-of-Things (IoT) devices. In this work, we try to achieve the accuracy of ML models trained with ε-DP data to be as close to the ML models trained with non-anonymized data for two different physiological time series. We propose to transform time series into domain-specific 2D (image) representations such as scalograms, recurrence plots (RP), and their joint representation as inputs for training classifiers. The advantages of using these image representations render our proposed approach secure by preventing data leaks since these image transformations are irreversible. These images allow us to apply state-of-the-art image classifiers to obtain accuracy comparable to classifiers trained on non-anonymized data by ex- ploiting the additional information such as textured patterns from these images. In order to achieve classifier performance with anonymized data close to non-anonymized data, it is important to identify the value of ε and the input feature. Experimental results demonstrate that the performance of the ML models with scalograms and RP was comparable to ML models trained on their non-anonymized versions. Motivated by the promising results, an end-to-end IoT ML edge-cloud architecture capable of detecting input drifts is designed that employs our technique to train ML models on ε-DP physiological data. Our classification approach ensures the privacy of individuals while processing and analyzing the data at the edge securely and efficiently.
10

Direct Detection of Multiple Backward Volume Modes in Yttrium Iron Garnet at Micron Scale Wavelengths

Lim, Jinho, Bang, Wonbae, Trossmann, Jonathan, Kreisel, Andreas, Jungfleisch, Matthias Benjamin, Hoffmann, Axel, Tsai, C. C., Ketterson, John B. 11 April 2023 (has links)
This article belongs to the Proceedings of The 37th International Symposium on Dynamical Properties of Solids.

Page generated in 0.1074 seconds