• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 389
  • 248
  • 72
  • 50
  • 19
  • 18
  • 17
  • 17
  • 17
  • 13
  • 6
  • 6
  • 6
  • 5
  • 3
  • Tagged with
  • 1007
  • 1007
  • 241
  • 223
  • 206
  • 204
  • 140
  • 135
  • 128
  • 126
  • 107
  • 99
  • 98
  • 95
  • 91
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Mean curvature flow with free boundary on smooth hypersurfaces

Buckland, John A. (John Anthony), 1978- January 2003 (has links)
Abstract not available
312

Dimension de Hausdorff de lieux de bifurcations maximales en dynamique des fractions rationnelles

Gauthier, Thomas 25 November 2011 (has links) (PDF)
Dans l'espace $\mathcal{M}_d$ des modules des fractions rationnelles de degré $d$, le lieu de bifurcation est le support d'un $(1,1)$-courant positif fermé $T_{\textup{bif}}$ appelé \emph{courant de bifurcation}. Ce courant induit une mesure $\mu_{\textup{bif}}=(T_{\textup{bif}})^{2d-2}$ dont le support est le siége de bifurcations maximales. Notre principal résultat est que le support de $\mu_{\textup{bif}}$ est de dimension de Hausdorff totale $2(2d-2)$. Il s'ensuit que l'ensemble des fractions rationnelles de degré $d$ possédant $2d-2$ cycles neutres distincts est dense dans un ensemble de dimension de Hausdorff totale. Remarquons que jusqu'alors, seule l'existence de telles fractions rationnelles (Shishikura) était connue. Mentionnons que pour notre démonstration, nous établissons au préalable que les fractions rationnelles $(2d-2)$-Misiurewicz appartiennent au support de $\mu_{\textup{bif}}$. \par Le dernier chapitre, indépendant du reste de la thése, traite de l'espace $\mathcal{M}_2$. Nous montrons que, dans ce cas, le courant $T_{\textup{bif}}$ se prolonge naturellement á $\p^2$ en un $(1,1)$-courant positif fermé dont nous calculons les nombres de Lelong. Nous montrons aussi que le support de la mesure $\mu_{\textup{bif}}$ est non-borné dans $\mathcal{M}_2$.
313

Combinatoire et dynamique du flot de Teichmüller

Delecroix, Vincent 16 November 2011 (has links) (PDF)
Ce travail de thèse porte sur la dynamique du flot linéaire des surfaces de translation et de sa renormalisation par le flot de Teichmüller introduite par H. Masur et W. Veech en 1982. Une version combinatoire de cette renormalisation, l'induction de Rauzy sur les échanges d'intervalles, fût introduite auparavant par G. Rauzy en 1979. D'une part, nous faisons une étude combinatoire des classes de Rauzy qui forment une partition de l'ensemble des permutations irréductibles et interviennent dans l'algorithme d'induction de Rauzy. Nous donnons une formule pour la cardinalité de chaque classe. D'autre part, nous étudions un modèle de billard infini $\ZZ^2$-périodique dans le plan appelé le \og vent dans les arbres \fg introduit dans une version stochastique par P.~et T. Ehrenfest en 1912 et par J. Hardy et J. Weber en 1980 dans la version périodique. Nous construisons une famille de directions pour lesquelles le flot du billard est divergent donnant ainsi des exemples de $\ZZ^2$-cocycles divergents au-dessus d'échanges d'intervalles. De plus, nous démontrons que le taux polynomial de diffusion générique est $2/3$ autrement dit que la distance maximale atteinte par une particule au temps $t$ est de l'ordre de $t^{2/3}$.
314

Development and implementation of real-time distributed network with the CAN protocol

Ford, Walter Davis. Gravagne, Ian A. January 2005 (has links)
Thesis (M.S.)--Baylor University, 2005. / Includes bibliographical references (p. 120-121).
315

Renormalization and central limit theorem for critical dynamical systems with weak external random noise

Díaz Espinosa, Oliver Rodolfo, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
316

Nonlinear Dynamical Systems Perspective on Climate Predictability

San Pedro Siqueira, Leo 28 November 2011 (has links)
Nonlinear dynamical systems theory has inspired a new set of useful tools to be applied in climate studies. In this work we presented specific examples where information has been gained by the application of methods from nonlinear dynamical systems theory. The main goal is to understand the relative importance of stochastic forcing versus deterministic coupling within the context of Coupled General Circulation Models. This work address this important subject by approaching this goal through the development of a hierarchy of models with increasing complexity that we assert contain the essential dynamics of ENSO. We examined the effect of noise in a low order model and found that it is not restricted to blurring the attractor trajectories in phase space, but includes important changes in the dynamics of the system. The main results indicate that the presence of noise in a nonlinear system has two different effects. The presence of noise acts to increase the maximum Lyapunov exponent and can result in noise induced chaos if the system was originally stable. However, the same arguments are not valid if the original system is already in the chaotic regime, where the noise inclusion acts to decrease the maximum Lyapunov exponent, therefore increasing the system stability. The system of interest includes coupled ocean-atmosphere interactions and here we mimic this interaction by coupling two low order models with very different dominant time scales. These subsystems interact in a complex, nonlinear way and the behavior of the whole system cannot be explained by a linear summation of dynamics of the system parts. We used information theory concepts to detect the influence of the slow system dynamics in synchronizing the fast system in coupled models. We introduced a fast-slow coupled system, where both the slowness of the ocean model and the intensity of the boundary forcing anomalies contribute to the asymmetry and phase locking of both subsystems. The mechanisms controlling the fast modelspread were uncovered revealing uncertainty dynamics depending on the location of ensemble members in the model’s phase space. As an intermediate step between low order models and CGCMs we study the effect of noise on an intermediate complexity model. The addition of gaussian noise to the Zebiak-Cane model in order to understand the effects of noise on its attractor led to a way of estimating the noise level based on the effects of noise on the correlation dimension curves. We investigate the intrinsic predictability of the coupled models used here, and the different time scales associated with fast and slow modes were detected using the Finite Size Lyapunov Exponents. We found new estimates for the prediction horizon of ENSO for the Zebiak-Cane model as well as for the NCAR CCSM3 model and observations. The whole analysis of observations and CCSM3 was possible after applying noise reduction techniques. We also improved our understanding of three different noise reduction techniques by comparing the Local Projective Noise Reduction, the Interactive Ensemble strategy, and a Random Interactive Ensemble applied to CCSM3. The main difference between these two noise reduction techniques is when the process is applied. The Local Projective Noise Reduction can be applied to both model and observations, and it is done a posteriori in phase space, therefore the trajectories to be adjusted already posses the physical mechanisms embedded in them. The Interactive Ensemble approach can only be applied to model simulations and has shown to be a very useful technique for noise reduction since its done a priori while the system evolves instead of a posteriori, besides the fact that it allows to retrieve the spatial distribution of the noise level in physical space.
317

Exploring recurrences in quasiperiodic systems

Zou, Yong January 2007 (has links)
In this work, some new results to exploit the recurrence properties of quasiperiodic dynamical systems are presented by means of a two dimensional visualization technique, Recurrence Plots(RPs). Quasiperiodicity is the simplest form of dynamics exhibiting nontrivial recurrences, which are common in many nonlinear systems. The concept of recurrence was introduced to study the restricted three body problem and it is very useful for the characterization of nonlinear systems. I have analyzed in detail the recurrence patterns of systems with quasiperiodic dynamics both analytically and numerically. Based on a theoretical analysis, I have proposed a new procedure to distinguish quasiperiodic dynamics from chaos. This algorithm is particular useful in the analysis of short time series. Furthermore, this approach demonstrates to be efficient in recognizing regular and chaotic trajectories of dynamical systems with mixed phase space. Regarding the application to real situations, I have shown the capability and validity of this method by analyzing time series from fluid experiments. / In dieser Arbeit stelle ich neue Resultate vor, welche zeigen, wie man Rekurrenzeigenschaften quasiperiodischer, dynamischer Systeme für eine Datenanalyse ausnutzen kann. Die vorgestellten Algorithmen basieren auf einer zweidimensionalen Darstellungsmethode, den Rekurrenz-Darstellungen. Quasiperiodizität ist die einfachste Dynamik, die nicht-triviale Rekurrenzen zeigt und tritt häufig in nichtlinearen Systemen auf. Nicht-triviale Rekurrenzen wurden im Zusammenhang mit dem eingeschränkten Dreikörper-problem eingeführt. In dieser Arbeit, habe ich mehrere Systeme mit quasiperiodischem Verhalten analytisch untersucht. Die erhaltenen Ergebnisse helfen die Wiederkehreigenschaften dieser Systeme im Detail zu verstehen. Basierend auf den analytischen Resultaten, schlage ich einen neuen Algorithmus vor, mit dessen Hilfe selbst in kurzen Zeitreihen zwischen chaotischem und quasiperiodischem Verhalten unterschieden werden kann. Die vorgeschlagene Methode ist besonders effizient zur Unterscheidung regulärer und chaotischer Trajektorien mischender dynamischer Systeme.Die praktische Anwendbarkeit der vorgeschlagenen Analyseverfahren auf Messdaten, habe ich gezeigt, indem ich erfolgreich Zeitreihen aus fluid-dynamischen Experimenten untersucht habe.
318

Fractal Fourier spectra in dynamical systems

Zaks, Michael January 2001 (has links)
Eine klassische Art, die Dynamik nichtlinearer Systeme zu beschreiben, besteht in der Analyse ihrer Fourierspektren. Für periodische und quasiperiodische Prozesse besteht das Fourierspektrum nur aus diskreten Deltafunktionen. Das Spektrum einer chaotischen Bewegung ist hingegen durch das Vorhandensein einer stetigen Komponente gekennzeichnet. In der Arbeit geht es um einen eigenartigen, weder regulären noch vollständig chaotischen Zustand mit sogenanntem singulärstetigen Leistungsspektrum. <br /> Unsere Analyse ergab verschiedene Fälle aus weit auseinanderliegenden Gebieten, in denen singulär stetige (fraktale) Spektren auftreten. Die Beispiele betreffen sowohl physikalische Prozesse, die auf iterierte diskrete Abbildungen oder gar symbolische Sequenzen reduzierbar sind, wie auch Prozesse, deren Beschreibung auf den gewöhnlichen oder partiellen Differentialgleichungen basiert. / One of the classical ways to describe the dynamics of nonlinear systems is to analyze theur Fourier spectra. For periodic and quasiperiodic processes the Fourier spectrum consists purely of discrete delta-functions. On the contrary, the spectrum of a chaotic motion is marked by the presence of the continuous component. In this work, we describe the peculiar, neither regular nor completely chaotic state with so called singular-continuous power spectrum. <br /> Our investigations concern various cases from most different fields, where one meets the singular continuous (fractal) spectra. The examples include both the physical processes which can be reduced to iterated discrete mappings or even symbolic sequences, and the processes whose description is based on the ordinary or partial differential equations.
319

Sur la décomposition réelle et algébrique des systèmes dépendant de paramètres

Moroz, Guillaume 28 November 2008 (has links) (PDF)
Cette thèse traite des systèmes paramétrés. Ils modélisent des applications dans divers domaines, comme la robotique ou la calibration. Soit S un système paramétré. Nous cherchons à décrire les ouverts connexes U de l'espace des paramètres tels que S restreint à U admet un nombre constant de solutions réelles. En robotique, nous détectons les positions cuspidales des robots plan 3-RPR. En calibration photographique, nous décrivons le nombre de solutions réalisables du problème Perspective-3- Points. D'un point de vue théorique, nous montrons que sous certaines hypothèses, le calcul de la variété discriminante d'un système paramétré peut se réduire à un calcul de projection. Dans le cas des systèmes quelconques, nous introduisons la décomposition équidimensionnelle régulière. Notre algorithme possède de bonnes performances en pratique et nous permet par ailleurs de déduire un nouvel algorithme pour le calcul du radical d'un idéal.
320

Kinematics, dynamics and intelligent control for nonholonomic mobile modular manipulators

Liu, Yu Gang January 2006 (has links)
University of Macau / Faculty of Science and Technology / Department of Electromechanical Engineering

Page generated in 0.0808 seconds