241 |
A DYNAMICAL APPROACH TO THE POTTS MODEL ON CAYLEY TREEDiyath Nelaka Pannipitiya (20329893) 10 January 2025 (has links)
<p dir="ltr">The Ising model is one of the most important theoretical models in statistical physics, which was originally developed to describe ferromagnetism. A system of magnetic particles, for example, can be modeled as a linear chain in one dimension or a lattice in two dimensions, with one particle at each lattice point. Then each particle is assigned a spin $\sigma_i\in \{\pm 1\}$. The $q$-state Potts model is a generalization of the Ising model, where each spin $\sigma_i$ may take on $q\geq 3$ a number of states $\{0,\cdots, q-1\}$. Both models have temperature $T$ and an externally applied magnetic field $h$ as parameters. Many statistical and physical properties of the $q$-~state Potts model can be derived by studying its partition function. This includes phase transitions as $T$ and/or $h$ are varied.</p><p><br></p><p dir="ltr">The celebrated \textit{Lee-Yang Theorem} characterizes such phase transitions of the $2$-state Potts model (the Ising model). This theorem does not hold for $q>2$. Thus, phase transitions for the Potts model as $h$ is varied are more complicated and mysterious. We give some results that characterize the phase transitions of the $3$-state Potts model as $h$ is varied for constant $T$ on the binary rooted Cayley tree. Similarly to the Ising model, we show that for fixed $T>0$ the $3$-state Potts model for the ferromagnetic case exhibits a phase transition at one critical value of $h$ or not at all, depending on $T$. However, an interesting new phenomenon occurs for the $3$-state Potts model because the critical value of $h$ can be non-zero for some range of temperatures. The $3$-state Potts model for the antiferromagnetic case exhibits a phase transition at up to two critical values of $h$. </p><p><br></p><p dir="ltr">The recursive constructions of the $(n+1)^{st}$ level Cayley tree from two copies of the $n^{th}$ level Cayley tree allows one to write a relatively simple rational function relating the Lee-Yang zeros at one level to the next. This allows us to use techniques from dynamical systems.</p>
|
242 |
Numerical solutions to some ill-posed problemsHoang, Nguyen Si January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Alexander G. Ramm / Several methods for a stable solution to the equation $F(u)=f$ have been developed.
Here $F:H\to H$ is an operator in a Hilbert space $H$,
and we assume that noisy data $f_\delta$, $\|f_\delta-f\|\le \delta$, are given in place of the exact data $f$.
When $F$ is a linear bounded operator, two versions of the Dynamical Systems Method (DSM) with stopping rules of Discrepancy Principle type are proposed and justified mathematically.
When $F$ is a non-linear monotone operator, various versions of the DSM are studied.
A Discrepancy
Principle for solving the equation is formulated and justified. Several
versions of the DSM for solving the equation
are
formulated. These methods consist of a Newton-type method, a
gradient-type method, and a simple iteration method. A priori and a
posteriori choices of stopping rules for these methods are proposed and
justified. Convergence of the solutions, obtained by these methods, to
the minimal norm solution to the equation $F(u)=f$ is proved. Iterative
schemes with a posteriori choices of stopping rule corresponding to the
proposed DSM are formulated. Convergence of these iterative schemes to a
solution to the equation $F(u)=f$ is proved.
This dissertation consists of six chapters which are based on joint papers by the author and his advisor Prof. Alexander G. Ramm.
These papers are published in different journals.
The first two chapters deal with equations with linear and bounded operators and the last four chapters deal with non-linear equations with monotone operators.
|
243 |
Mathematical modelling of bacterial attachment to surfaces : biofilm initiationEl Moustaid, Fadoua 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Biofilms are aggregations of bacteria that can thrive wherever there is a watersurface
or water-interface. Sometimes they can be beneficial; for example,
biofilms are used in water and waste-water treatment. The filter used to remove
contaminants acts as a scaffold for microbial attachment and growth. However,
biofilms could have bad effects, especially on a persons health. They can cause
chronic diseases and serious infections. The importance of biofilms in industrial
and medical settings, is the main reason of the mathematical studies performed
up to now, concerning biofilms.
Biofilms have been mathematical modelling targets over the last 30 years.
The complex structure and growth of biofilms make them difficult to study.
Biofilm formation is a multi-stage process and occurs in even the most unlikely
of environmental conditions. Models of biofilms vary from the discrete to the
continuous; accounting for one-species to multi-species and from one-scale to
multi-scale models. A model may even have both discrete and continuous
parts. The implication of these differences is that the tools used to model
biofilms differ; we present and review some of these models.
The aim in this thesis is to model the early initiation of biofilm formation.
This stage involves bacterial movement towards a surface and the attachment
to the boundary which seeds a biofilm. We use a diffusion equation to describe
a bacterial random walk and appropriate boundary conditions to model surface
attachment. An analytical solution is obtained which gives the bacterial
density as a function of position and time. The model is also analysed for
stability. Independent of this model, we also give a reaction diffusion equation
for the distribution of sensing molecules, accounting for production by the
bacteria and natural degradation.
The last model we present is of Keller-Segel type, which couples the dynamics
of bacterial movement to that of the sensing molecules. In this case,
bacteria perform a biased random walk towards the sensing molecules. The
most important part of this chapter is the derivation of the boundary conditions.
The adhesion of bacteria to a surface is presented by zero-Dirichlet
boundary conditions, while the equation describing sensing molecules at the
interface needed particular conditions to be set. Bacteria at the boundary also
produce sensing molecules, which may then diffuse and degrade. In order to
obtain an equation that includes all these features we assumed that mass is conserved. We conclude with a numerical simulation. / AFRIKAANSE OPSOMMING: Biofilms is die samedromming van bakterieë wat kan floreer waar daar ’n wateroppervlakte
of watertussenvlak is. Soms kan hulle voordelig wees, soos
byvoorbeeld, biofilms word gebruik in water en afvalwater behandeling. Die
filter wat gebruik word om smetstowwe te verwyder, dien as ’n steier vir mikrobiese
verbinding en groei. Biofilms kan ook egter slegte gevolge he, veral op ’n
persoon se gesondheid. Hulle kan slepende siektes en ernstige infeksies veroorsaak.
Die belangrikheid van biofilms in industriële en mediese omgewings,
is die hoof rede vir die wiskundige studies wat tot dusver uitgevoer is met
betrekking tot biofilms.
Biofilms is oor die afgelope 30 jaar al ’n teiken vir wiskundige modellering.
Die komplekse struktuur en groei van biofilms maak dit moeilik om hul
te bestudeer. Biofilm formasie is ’n multi-fase proses, en gebeur selfs in die
mees onwaarskynlikste omgewings. Modelle wat biofilms beskryf wissel van
die diskreet tot die kontinu, inkorporeer een of meer spesies, en strek van eentot
multi-skaal modelle. ’n Model kan ook oor beide diskreet en kontinue komponente
besit. Dit beteken dat die tegnieke wat gebruik word om biofilms te
modelleer ook verskil. In hierdie proefskrif verskaf ons ’n oorsig van sommige
van hierdie modelle.
Die doel in hierdie proefskrif is om die vroeë aanvang van biofilm ontwikkeling
te modeleer. Hierdie fase behels ’n bakteriële beweging na ’n oppervlak
toe en die aanvanklike aanhegsel wat sal ontkiem in ’n biofilm. Ons gebruik ’n
diffusievergelyking om ’n bakteriële kanslopie te beskryf, met geskikte randvoorwaardes.
’n Analities oplossing is verkry wat die bakteriële bevolkingsdigtheid
beskryf as ’n funksie van tyd en posisie. Die model is ook onleed om
te toets vir stabiliteit. Onafhanklik van die model, gee ons ook ’n reaksiediffusievergelyking
vir die beweging van waarnemings-molekules, wat insluit
produksie deur die bakterieë en natuurlike afbreking.
Die laaste model wat ten toon gestel word is ’n Keller-Segel tipe model,
wat die bakteriese en waarnemings-molekule dinamika koppel. In hierdie geval,
neem die bakterieë ’n sydige kanslopie agter die waarnemings molekules aan.
Die belangrikste deel van hierdie hoofstuk is die afleiding van die randvoorwaardes.
Die klewerigheid van die bakterieë tot die oppervlak word vvorgestel
deur nul-Dirichlet randvoorwaardes, terwyl die vergelyking wat waarnemingsmolekule
gedrag by die koppelvlak beskryf bepaalde voorwaardes nodig het. Bakterieë op die grensvlak produseer ook waarnemings-molekules wat diffundeer
en afbreek. Om te verseker dat al hierdie eienskappe omvat is in ’n
vergelyking is die aanname gemaak dat massa behoud bly. Ter afsluiting is
numeriese simulasie van die model gedoen.
|
244 |
On non-archimedean dynamical systemsJoyner, Sheldon T 12 1900 (has links)
Thesis (MSc) -- University of Stellenbosch, 2000. / ENGLISH ABSTRACT: A discrete dynamical system is a pair (X, cf;) comprising a non-empty set X and a map
cf; : X ---+ X. A study is made of the effect of repeated application of cf; on X, whereby points
and subsets of X are classified according to their behaviour under iteration. These subsets
include the JULIA and FATOU sets of the map and the sets of periodic and preperiodic
points, and many interesting questions arise in the study of their properties.
Such questions have been extensively studied in the case of complex dynamics, but much
recent work has focussed on non-archimedean dynamical systems, when X is projective
space over some field equipped with a non-archimedean metric. This work has uncovered
many parallels to complex dynamics alongside more striking differences.
In this thesis, various aspects of the theory of non-archimedean dynamics are presented,
with particular reference to JULIA and FATOU sets and the relationship between good
reduction of a map and the empty JULIA set. We also discuss questions of the finiteness
of the sets of periodic points in special contexts. / AFRIKAANSE OPSOMMING: 'n Paar (X, <jJ) bestaande uit 'n nie-leë versameling X tesame met 'n afbeelding <jJ: X -+ X
vorm 'n diskrete dinamiese sisteem. In die bestudering van so 'n sisteem lê die klem op
die uitwerking op elemente van X van herhaalde toepassing van <jJ op die versameling.
Elemente en subversamelings van X word geklasifiseer volgens dinamiese kriteria en op
hierdie wyse ontstaan die JULIA en FATOU versamelings van die afbeelding en die versamelings
van periodiese en preperiodiese punte. Interessante vrae oor die eienskappe van
hierdie versamelings kom na vore.
In die geval van komplekse dinamika is sulke vrae reeds deeglik bestudeer, maar onlangse
werk is op nie-archimediese dinamiese sisteme gedoen, waar X 'n projektiewe ruimte is
oor 'n liggaam wat met 'n nie-archimediese norm toegerus is. Hierdie werk het baie
ooreenkomste maar ook treffende verskille met die komplekse dinamika uitgewys.
In hierdie tesis word daar ondersoek oor verskeie aspekte van die teorie van nie-archimediese
dinamika ingestel, in besonder met betrekking tot die JULIA en FATOU versamelings en
die verband tussen goeie reduksie van 'n afbeelding en die leë JULIA versameling. Vrae
oor die eindigheid van versamelings van periodiese punte in spesiale kontekste word ook
aangebied.
|
245 |
Boolean functions and discrete dynamics: analytic and biological applicationEbadi, Haleh 05 July 2016 (has links) (PDF)
Modeling complex gene interacting systems as Boolean networks lead to
a significant simplification of computational investigation. This can be
achieved by discretization of the expression level to ON or OFF states and
classifying the interactions to inhibitory and activating. In this respect,
Boolean functions are responsible for the evolution of the binary elements of
the Boolean networks. In this thesis, we investigate the mostly used Boolean
functions in modeling gene regulatory networks. Moreover, we introduce
a new type of function with strong inhibitory namely the veto function.
Our computational and analytic studies on the verity of the networks capable
of constructing the same State Transition Graph lead to define a new
concept namely the “degeneracy” of Boolean functions. We further derive
analytically the sensitivity of the Boolean functions to perturbations. It
turns out that the veto function forms the most robust dynamics. Furthermore,
we verify the applicability of veto function to model the yeast cell
cycle networks. In particular, we show that in an intracellular signal transduction
network [Helikar et al, PNAS (2008)], the functions with veto are
over-represented by a factor exceeding the over-representation of threshold
functions and canalyzing functions in the same system. The statistics of
the connections of the functional networks are studied in detail. Finally,
we look at a different scale of biological phenomena using a binary model.
We propose a simple correlation-based model to describe the pattern formation
of Fly eye. Specifically, we model two different procedures of Fly eye
formation, and provide a generic approach for Fly eye simulation.
|
246 |
Two Generalizations of the Filippov OperationEryuzlu, Menevse 01 April 2016 (has links)
The purpose of this thesis is to generalize Filippov's operation, and to get more useful results. It includes two main parts: The C-Filippov operation for the finite and countable cases and the Filippov operation with different measures. In the first chapter, we give brief information about the importance of Filippov's operation, our goal and the ideas behind our generalizations. In the second chapter, we give some sufficient background notes. In the third chapter, we introduce the Filippov operation, explain how to calculate the Filippov of a function and give some sufficient properties of it. In the fourth chapter, we introduce a generalization of the Filippov operation, the C-Filippov, and give some of its properties which we need for the next chapter. In the fifth chapter, in the first main part, we discuss some properties of the C-Filippov for special cases and observe the differences and common properties between the Filippov and C-Filippov operations. Finally, in the sixth chapter, we present the other generalization of the Filippov operation which is Filippov with different measures. We observe the properties of the corresponding Filippovs when we know the relationship between the measures. We finish the thesis by summarizing our work and discussing future work.
|
247 |
COORDINATION OF SWIMBENCH FREESTYLE IN ELITE AND NON-ELITE SWIMMERS: A DYNAMICAL SYSTEM APPROACHSpigelman, Tracy H. 01 January 2009 (has links)
Elite swimmers can be distinguished from novice swimmers by freestyle stroke technique. Elite swimmers move through multiple coordination modes, increases in stroke lengths, stroke rates, and body roll allowing for a more symmetrical stroke and increased speed compared with novice swimmer during 100m freestyle.
Coaches strive to improve swimmers’ performance by providing feedback about stroke technique, mostly from the pool deck where view of the full stroke cycle is obstructed by the water. Tools to assess swimming are often expensive and require extra training, which does not provide a pragmatic solution. A dryland rotational swimbench would provide a means to evaluate freestyle swimming. The aim of the present study is to evaluate the sensory motor system of elite and novice level swimmers by comparing kinematic, coordinative structures and spatial-temporal characteristics of freestyle stroke on a dryland swimbench with a rotational component.
Thirty elite and novice collegiate and masters swimmers were instrumented with reflective markers bilaterally on the upper extremity and torso. A series of four ten second trials of freestyle sprint swimming were performed on the swimbench. Repeated measures were used for statistical analysis for comparison between and within groups. Bonferroni corrections were used as post-hoc analysis.
Results indicated no significant difference between elite and novice swimmers’ sensory-motor system, kinematics or spatio-temporal systems on a rotational swimbench. Similarities could be accounted for by swimmers perceiving a novel task due to differences in sensory feedback, and mechanical limitations of the bench. It is noteworthy that catch-up/opposition coordination are more common than superposition which provides support for the swimbench providing a more similar representation to in water swimming.
|
248 |
Contribution à l'identification fréquentielle robuste des systèmes dynamiques linéairesTorkhani, Nabil 04 December 1995 (has links) (PDF)
Cette thèse concerne le problème d'identification robuste H indice infini de données harmoniques sur une bande limitée de fréquence, généralisation plus réaliste du problème d'identification robuste H indice infini étudié ces dernières années notamment par Gu, Helmiki, Jacobson, Kargonekhar, Mäkilä, Nett et Partington. L'introduction, en dehors de cette bande, d'un comportement de référence et d'un gabarit rend possible une adaptation des algorithmes classiques en deux étapes, La solution du problème posé est alors donnée par la résolution d'un problème extrémal borné après une première étape d'interpolation robuste des données sur un arc du cercle unité. Cependant, la solution ainsi calculée est typiquement discontinue. La principale contribution de ce travail à l'identification fréquentielle robuste consiste à montrer qu'il est possible de prendre en compte le caractère local des données en fréquence et garantir l'appartenance de la solution à l'algèbre du disque. Un algorithme est donné et sa mise en œuvre numérique est détaillée. Le choix du comportement en dehors de la bande considérée pose plus généralement le problème de complétion analytique borné dans H indice p. Nous le résolvons dans H indice 2 et l'utiliserons pour vérifier la validité de l'hypothèse de linéarité du système.
|
249 |
Pathwise properties of random quadratic mappingLian, Peng January 2010 (has links)
No description available.
|
250 |
Well-posedness of dynamics of microstructure in solidsSengul, Yasemin January 2010 (has links)
In this thesis, the problem of well-posedness of nonlinear viscoelasticity under the assumptions allowing for phase transformations in solids is considered. In one space dimension we prove existence and uniqueness of the solutions for the quasistatic version of the model using approximating sequences corresponding to the case when initial data takes finitely many values. This special case also provides upper and lower bounds for the solutions which are interesting in their own rights. We also show equivalence of the existence theory we develop with that of gradient flows when the stored-energy function is assumed to be -convex. Asymptotic behaviour of the solutions as time goes to infinity is then investigated and stabilization results are obtained by means of a new argument. Finally, we look at the problem from the viewpoint of curves of maximal slope and follow a time-discretization approach. We introduce a three-dimensional method based on composition of time-increments, as a result of which we are able to deal with the physical requirement of frame-indifference. In order to test this method and distinguish the difficulties for possible generalizations, we look at the problem in a convex setting. At the end we are able to obtain convergence of the minimization scheme as time step goes to zero.
|
Page generated in 0.0712 seconds