Spelling suggestions: "subject:"dystrophic.""
1 |
Analyse des délétions au locus de la dystrophineGingras, France January 1992 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Aspects cliniques, fonctionnels et généalogiques de la dystrophie musculaire oculo-pharyngee au Saguenay-Lac-Saint-Jean /Tymczuk Tremblay, Sophie. January 1992 (has links)
Mémoire (M.Sc.)-- Université du Québec à Chicoutimi, 1992. / "Mémoire présenté pour l'obtention du grade de maître es sciences (M.Sc.)" Ce mémoire a été réalisé à l'UQAC dans le cadre du programme de maîtrise en médecine expérimentale (génétique) extensionné de l'Un. Laval à l'UQAC. CaQCU CaQCU Bibliogr.: f. 75-80. Document électronique également accessible en format PDF. CaQCU
|
3 |
Die plazentare Regulation von 11ssHydroxysteroiddehydrogenase Typ2 und Corticotropin bei intrauteriner WachstumsrestriktionWeidinger, Martina Maria January 2008 (has links)
Zugl.: Erlangen, Nürnberg, Univ., Diss., 2008
|
4 |
Activité EMG des muscles du dos chez des patients dystrophiquesThouin, Jean-François January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
5 |
Caractérisation clinique et génétique d'une nouvelle forme de dystrophie musculaire avec hyperlaxitéTétreault, Martine January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
6 |
Etude de l'épissage alternatif de l'exon 2 de Tau dans un modèle de tauopathie : la dystrophie myotonique de type 1 / Study of Tau alternative splicing in a model of tauopathy : myotonic dystrophy type 1Carpentier, Céline 16 December 2013 (has links)
Une altération de l’épissage alternatif est impliquée dans certaines pathologies telles que la Dystrophie Myotonique de type 1 (DM1). La DM1 est une maladie génétique multisystémique appartenant à la famille des maladies à expansion de triplets. En effet, bien que non traduites, les expansions CUG localisées en 3’ des transcrits DMPK répriment l’exportation nucléaire de ces transcrits. Ce phénomène entraine notamment une dérégulation de l’activité de plusieurs facteurs régulateurs d’épissage parmi lesquels les familles CELF (CUGBP and ETR-3 like factor) et MBNL (MuscleBlind like). Cette dérégulation aboutit à un défaut d’épissage alternatif de nombreux transcrits, en particulier dans les muscles squelettiques, le cœur et le cerveau. On compte parmi ces transcrits dérégulés celui du gène MAPT codant pour les protéines Tau. Six isoformes de Tau, issues de l’épissage alternatif des exons 2, 3 et 10, sont principalement exprimées dans le cerveau adulte humain. Dans le cerveau DM1, ces exons sont préférentiellement exclus.La régulation et la dérégulation de l’épissage alternatif de l’exon 2 de Tau dans la DM1 peuvent être étudiées via l’utilisation de minigènes. Ces minigènes sont constitués de séquences Tau plus ou moins délétées insérées dans un vecteur plasmidique. Nous avons démontré que la nature de ce vecteur a une influence sur l’épissage. La construction de différents minigènes a donc permis de sélectionner celui le plus adapté à la recherche des séquences cis régulatrices de Tau. L’étude de ces minigènes démontre l’existence d’éléments cis répresseurs éloignés de l’exon, entre les nucléotides +500 et +2100 en aval de l’exon 2. Par contre, les éléments ciblés par les répétitions CTG dans la DM1 sont proximaux à l’exon 2, dans les 250 pb de part et d’autre de l’exon. Dans ces expansions CTG peuvent être séquestrés certains facteurs d’épissage tels que ceux de la famille MBNL. Dans notre modèle cellulaire, l’extinction de l’expression de MBNL1 ou l’utilisation de minigènes mutants MBNL démontrent que ces facteurs sont impliqués dans la régulation et la dérégulation de l’épissage de l’exon 2 de Tau. De plus, la surexpression de MBNL2 restaure un épissage normal de l’exon 2 en présence de la mutation DM1. Cette restauration est augmentée lorsque MBNL1 est également surexprimé suggérant un effet synergique de ces deux facteurs. Par la suite, nous avons étudié l’intervention d’autres familles de facteurs ubiquitaires ou impliqués dans les pathologies à expansion de triplets. Les facteurs conduisant à la dérégulation de l’exon 10 dans la DM1 n’étant que très peu connus, l’épissage du transcrit de Tau endogène a été analysé afin d’étudier à la fois les exons 2 et 10. Ainsi, de nouveaux facteurs impliqués dans la régulation de l’exon 2 (CELF2, 4 et 6, PTB1 et 2, Sam68, MBNL2) et de l’exon 10 (Sam68, MBNL2, Fox 1 et 2) ont été identifiés. Pour la première fois, l’implication des facteurs CELF5, SC35, SRp20, SRp75, 9G8 pour l’exon 2 et CELF3, hnRNPA1 et Fox1 pour l’exon 10 dans la restauration d’un épissage normal en présence de la mutation DM1 a été identifiée. En conclusion, les exons 2 et 10 de Tau, bien que tous deux dérégulés dans la DM1, sont régulés et dérégulés de façon différente. / Myotonic Dystrophy Type 1 (DM1) belongs to the group of pathologies referred as misregulated alternative splicing or spliceopathies. DM1 is a multisystemic inherited disease characterized by an unstable CTG-repeat expansion in the 3’ UTR of the DMPK gene. These CUG expansions are not translated, but they inhibit nuclear exportation of DMPK transcripts modifying in this way, the pool of available splicing regulating factors like CELF (CUGBP and ETR-3 like factor) and MBNL (Muscleblind Like) families. This deregulation leads to a default of alternative splicing of numerous transcripts, particularly in skeletal muscle, heart and brain. Beyond them, we focus on RNA from the microtubule-associated protein Tau (MAPT). In human brain, six Tau RNA variants have been described from alternative splicing of exons 2, 3 and 10. In DM1 brains, it has been reported a repression of the inclusion of these exons. The functionality of alternative splicing of Tau exon 2 in DM1 can be studied by the use of minigenes. These minigenes are constituted of Tau sequences more or less deleted, inserted in a plasmidic vector. We demonstrated that the nature of the vector has an influence on splicing. The construction of different minigenes permit to choose the one more adaptated to the research of cis-elements involved in both normal and pathological splicing of Tau RNAs. So, cis elements implicated in regulation of Tau exon 2 are distant of the exon (between nucleotides +500 and +2100 upstream exon 2). On the over hand, cis elements targeted by CUG repetitions in DM1 are close to exon 2 (in 25O nucleotides around exon 2). In this CUG expansions, some splicing factors like MBNL family members can be sequestered. In our cellular model, extinction of expression of MBNL1 and the use of minigenes mutants for MBNL sites show that these factors are implicated in both regulation and deregulation of Tau exon 2 alternative splicing. Moreover, over-expression of MBNL2 can restore a normal Tau exon 2 splicing in presence of DM1 mutation. This restoration is increased when MBNL1 is also over-expressed, suggesting a synergic effect between MBNL1 and MBNL2. Secondly, we studied the involvement of other families of splicing factors such as ubiquitary factors (SR, hnRNP) or factors implicated in others pathologies with triplets expansions (p68, Sam68, Fox). Exon 10 deregulation was very studied in FTDP-17 (Frontotemporal dementia and parkinsonism linked to chromosome 17) but not in DM1. So, Tau endogene has been analysed to study both exon 2 and 10. So, new factors implicated in regulation of exon 2 (CELF2, 4, 6, PTB1 and 2, Sam68, MBNL2) and 10 (Sam68, MBNL2, Fox 1 and 2) were identified. For the first time, the implication of the factors CELF5, SC35, SRp20, SRp75, 9G8 for exon 2 and CELF3, hnRNPA1, Fox1 for exon 10 in the restoration of a normal Tau splicing in presence of DM1 mutation have been identified. In conclusion, our data show that Tau exon 2 and 10, both alterated in DM1 pathology, are regulated and deregulated by different mechanisms.
|
7 |
Correction du gène de la dystrophine avec la méthode CRISPR induced deletion (CinDel)Iyombe, Jean-Paul 29 May 2019 (has links)
La dystrophie musculaire est une maladie génétique monogénique récessive liée au chromosome X. Elle atteint 1 garçon sur 3500 naissances mâles. Le garçon atteint de la maladie présente des troubles de la locomotion à l’âge de 3-4 ans et la perd vers l’âge de 11 ans. La mort survient entre 18-30 ans suite à des complications cardio-pulmonaires. Il n’existe pas à ce jour un traitement curatif efficace contre cette grave maladie. Nous avons développé une approche de thérapie génique appelée CRISPR-induced deletion (CinDel) pour corriger le gène DMD muté. Elle utilise deux ARNg qui ciblent les exons précédant et suivant la délétion responsable du décalage du cadre de lecture. La reconnaissance des sites ciblés par les deux ARNg permet le recrutement de la nucléase Cas9 qui génère des coupures double-brin. Les séquences exoniques et introniques situées entre les deux coupures sont ensuite délétées. Les restes des exons sont joints par la recombinaison non homologue (NHEJ) pour produire un exon hybride, rétablir le cadre de lecture et permettre la synthèse d’un edystrophine tronquée ayant une structure correcte des répétitions de type spectrine (Spectrin-Like Repeat: SLR) et des heptades. Cette approche CinDel a été utilisée dans le cadre de ce projet d’abord pour corriger le gène DMD muté dans les myoblastes d’un patient avec une délétion des exons 51-53. Les exons 50 et 54 ont été ciblés avec deux ARNg et la Spcas9 pour produire des coupures double-brin et déléter les séquences situées entre ces deux sites et produire par NHEJ un exon hybride 50-54. L’approche a également permis de corriger in vivo le gène DMD muté dans le modèle animal, la souris transgénique avec un gène DMD humain ayant une délétion de l’exon 52 (del52hDMD) en utilisant un vecteur viralAAV9 contenant le gène SpCas9 et deux ARNgs. Pour vérifier la localisation par rapport au sarcolemme de la dystrophine tronquée avec ou sans une structure correcte des SLR et des heptades, nous avons électroporé les muscles Tibialis anteriorde souris mdx/mdx avec des plasmides codant pour les gènes normal et tronqué de la dystrophine fusionnée avec le gène de l’EGFP. Les résultats de cette expérience montrent que les dystrophines tronquées et normale se localisent correctement sous le sarcolemme. En vue de réprimer efficacement le gène de la SpCas9 et éviter son expression prolongée qui peut être à la base de coupures aléatoires et inattendues (off-target effects) dans le génome, nous avons mis au point une méthode de répression appelée Hara-Kiri moléculaire. Elle utilise la méthode CinDel et consiste à cibler deux régions du gène de SpCas9 avec deux ARNg. Le recrutement de la nucléase permet à celle-ci de couper son propre gène (Hara-Kiri). La séquence située entre les deux sites de coupures est délétée. Par NHEJ, les restes du gène de SpCas9 sont joints en générant un codon stop TAA au point de jonction. Cette approche a permis de réprimer efficacement le gène de SpCas9 in vitro et in vivo / Duchenne Muscular Dystrophy (DMD) is an X-linked genetically recessive genetic disorder. It affects 1 boy out of 3500 male births. The boy with the disorder presents walking disorders at the age of 3-4 years and loses it around the age of 11. Death occurs around 18-30 years of age from cardiopulmonary complications. To date, there is no effective cure for this serious disease. We have developed a gene therapy approach called CRISPR-induced deletion (CinDel) to correct the mutated DMD gene. It uses two gRNAs that target the exons preceding and following the deletion responsible for the frame shift. The recognition of the target sites by the two gRNAs allows the recruitment of the Cas9 nuclease, which generates double-strand breaks. The exonic and intronic sequences located between the two cuts are then deleted and the remains of the exons are fused by Non-Homologous End Joining (NHEJ) to produce a hybrid exon and restore the reading frame and to allow the synthesis of the truncated dystrophin with correct SLR structure and heptads. The CinDel approach was used in this project to correct the mutated DMD gene in the myoblasts of a patient with a 51-53 deletion. Exons 50 and 54 were targeted by SpCas9 and two gRNAs and to produce double strand breaks, delete the sequences between the two cleavage sites and produce a hybrid exon 50-54 by NHEJ. This restored the normal reading frame and allowed the expression of truncated dystrophin in the patient's myotubes. The approach also made it possible to correct in vivo the mutated DMD gene in the animal model, the transgenic mouse with a human DMD gene having a deletion of exon 52 (del52hDMD) using an AAV9 viral vector containing the SpCas9 gene and two ARNgs. To verify the location with respect to the sarcolemma of truncated dystrophin with or without a correct SLR structure and heptads, we electroporated the Tibialis anterior muscles of mdx/mdx mice with the plasmids encoding the normal or the truncated dystrophin gene fused with the eGFP gene. The results of this experiment show that truncated and normal dystrophins were well localized under sarcolemma. In order to effectively repress the SpCas9 gene and avoid its prolonged expression that may be the basis of random and unexpected (off-target effects) cuts in the genome, we have developed a method of repression called molecular Hara-Kiri. It uses the CinDel method and consists of targeting two regions of the SpCas9 gene with two gRNAs. Recruiting nuclease allows it to cut its own gene (Hara-Kiri). The sequence between the two cleavage sites is deleted. The residues of the SpCas9 gene are then joined by NHEJ generating a TAA stop codon at the junction point. This approach effectively repressed the SpCas9 gene in vitro and in vivo.
|
8 |
Rôle des protéases dans la dystrophie endothéliale cornéenne de Fuchs et la transition endothélio-mésenchymateuseXu, Isabelle 02 February 2024 (has links)
No description available.
|
9 |
La dystrophie endothéliale cornéenne de Fuchs sous l'angle de la mitochondrie : marqueur de progression et avenue de traitementMéthot, Sébastien 25 March 2024 (has links)
Thèse ou mémoire avec insertion d'articles. / L'endothélium cornéen est la couche cellulaire la plus postérieure de la cornée. Elle a pour rôle de maintenir la cornée en déturgescence nécessaire à sa transparence. À cette fin, les cellules endothéliales cornéennes agissent comme une barrière pour limiter l'entrée de liquide et, à l'aide de pompes Na⁺/K⁺ ATPases, expulsent les liquides du stroma cornéen vers la chambre antérieure. La dystrophie endothéliale cornéenne de Fuchs (FECD) est une maladie de la cornée qui compromet le rôle de l'endothélium menant à des pertes de vision. La pathologie est caractérisée par une perte de cellules endothéliales accélérée et la formation d'excroissances de matrice extracellulaire appelées les guttaes. La perte de l'intégrité de l'endothélium cornéen provoque des infiltrations de liquide dans le stroma menant à une perte de la transparence de la cornée. Le seul traitement curatif pour la FECD est la transplantation de cornée pour laquelle la quantité de greffons est limitante. Les causes de la FECD ne sont pas encore bien comprises. Toutefois il existe des évidences d'une implication des mitochondries et du stress oxydatif. Ces deux éléments seraient liés dans un cercle vicieux où les dommages mitochondriaux causés par le stress oxydatif mèneraient à une augmentation de la production d'espèces réactives de l'oxygène. L'effet de ce cercle vicieux sur la fonction mitochondriale et comment cela affecte la progression de FECD reste peu connu et c'est à ce niveau que les travaux de cette thèse sont contributoires. En prenant en compte la démonstration de variation dans la masse mitochondriale entre les cellules endothéliales FECD réalisée précédemment dans notre équipe, nous avons tout d'abord lié la masse mitochondriale à des marqueurs de santé mitochondriale et d'état de la cellule. Ceci a permis de lier ces marqueurs à la progression de la pathologie. En effet, nous avons montré que le statut apoptotique et oxydatif ainsi qu'un niveau de calcium et de potentiel membranaire mitochondrial des cellules de l'endothélium provenant de patients FECD variaient en fonction de leur masse mitochondriale. Nous avons émis l'hypothèse que les variations de masse mitochondriale observées sont liées à des évènements dans la progression de la FECD liée à une surutilisation mitochondriale qu'on a appelé le «burnout mitochondrial». Nous avons ensuite lié la présence des guttae aux différents indicateurs du «burnout mitochondrial». En mesurant l'aire des guttae en conjonction avec les marqueurs de santé mitochondriale et d'état cellulaire, il a été possible de montrer que la présence des guttae est liée à un bilan négatif pour la santé mitochondriale et le statut apoptotique et oxydatif des cellules endothéliales des patients FECD. Nos travaux montrant que l'endommagement des mitochondries par la FECD jouait un rôle central dans la progression de la pathologie nous ont permis de soulever l'hypothèse que l'ajout de mitochondries saines dans les cellules endothéliales ralentirait la progression de la pathologie. Pour tester cette hypothèse, nous avons transplanté des mitochondries via la co-incubation avec des endothélia de patients FECD. Nous avons ensuite évalué l'effet de la transplantation de mitochondries sur les différents marqueurs cellulaires de progression de la FECD. Une amélioration de la santé mitochondriale, autant au niveau du potentiel mitochondrial que du calcium mitochondrial et de la mitophagie, a été observée à la suite de la transplantation. Nous avons également observé une amélioration de l'état cellulaire par la diminution du stress oxydatif et une perte du statut apoptotique pour la majorité des cellules endothéliales. Les travaux de cette thèse mettent en lumière une chronologie des évènements de la FECD liés à la progression de la pathologie ainsi que l'apparition de guttae. Ces travaux présentent aussi une nouvelle avenue de traitement pour la FECD en utilisant la transplantation mitochondriale. Cela pourrait permettre de diminuer, voire d'abolir, le besoin de greffons de cornée pour traiter la pathologie. / The corneal endothelium is the most posterior cell layer of the cornea. Its role is to maintain the cornea in deturgescence which is necessary for its transparency. To this end, corneal endothelial cells act as a barrier to limit fluid entry and, with the help of Na⁺/K⁺ ATPase pumps, expel fluids from the corneal stroma to the anterior chamber. Fuchs corneal endothelial dystrophy (FECD) is a corneal disease that compromises the role of the endothelium leading to loss of vision. The pathology is characterized by accelerate dendothelial cell loss and the formation of extracellular matrix growths called guttae. The loss of integrity of the corneal endothelium causes fluid infiltration into the stroma leading to a loss of corneal transparency. The only curative treatment for FECD is corneal transplantation for which the quantity of grafts is limited. The causes of FECD are not well understood yet, however there is evidence of the involvement of mitochondria and oxidative stress. These two elements appear to be linked in a vicious circle where mitochondrial damage caused by oxidative stress leads to an increase in the production of reactive oxygen species. The effect of this vicious circle on mitochondrial function and how it affects the progression of FECD remains unknown and it is at this level that the work of this thesis is contributory. Considering the demonstration of variation in mitochondrial mass between FECD endothelial cells made previously in our team, we first linked mitochondrial mass to markers of mitochondrial health and cell status. This made it possible to link these markers to the progression of the pathology. Indeed, we showed that the apoptotic and oxidative status as well as a level of calcium and mitochondrial potential of endothelial cells from FECD patients varied according to their mitochondrial mass. We hypothesized that the observed mitochondrial mass variations are related to events in the progression of FECD related to mitochondrial overuse that we have named "mitochondrial burnout". Then, we linked the presence of guttae to different indicators of "mitochondrial burnout". By measuring the area of guttae in conjunction with markers of mitochondrial health and cellular state, it was possible to show that the presence of guttae is linked to a negative outcome for mitochondrial health and the apoptotic and oxidative status of cells. endothelial disease of FECD patients. Our work shows that the damage of mitochondria by FECD plays a central role in the progression of the pathology, we raised the hypothesis that the addition of healthy mitochondria to endothelial cells would slow down the progression of the pathology. To test this hypothesis, we transplanted mitochondria via co-incubation to FECD patient endothelium. We then evaluated the effect of mitochondria transplantation on the different cellular markers of FECD progression. An improvement in mitochondrial health, both in terms of mitochondrial potential and mitochondrial calcium and mitophagy, was observed following transplantation. We also observed an improvement in the cellular state by the reduction of oxidative stress and a loss of apoptotic status for a majority of endothelial cells. The work of this thesis sheds light on a chronology of FECD events related to the progression of the pathology as well as the appearance of guttae. This work also presents a new avenue of treatment for FECD using mitochondrial transplantation. This could reduce or even eliminate the need for corneal grafts to treat the pathology.
|
10 |
Rôle des contractures lors de la marche des enfants atteints de dystrophie musculaire de DuchenneGaudreault, Nathaly January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
Page generated in 0.1047 seconds