• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 188
  • 56
  • 19
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 578
  • 461
  • 232
  • 203
  • 108
  • 62
  • 58
  • 50
  • 47
  • 43
  • 41
  • 40
  • 39
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The role of dystroglycan in muscular dystrophy and synaptogenesis /

Montanaro, Federica. January 1999 (has links)
No description available.
82

Cerebellar synaptic plasticity in two animal models of muscular dystrophy

Anderson, Jennifer Louise, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
Duchenne muscular dystrophy (DMD) and congenital muscular dystrophy 1A (MDC1A) are the two most common forms of muscular dystrophy in humans, caused by mutations in dystrophin and laminin α2 genes respectively. Both are severe forms of the disease that lead to premature death due and are both now known to have a significant effect on the central nervous system. This project investigated the role of both proteins involved in each of these diseases in cerebellar Purkinje cells of two murine models of disease: the mdx mouse a dystrophin-deficient model of DMD and the dy2J a laminin α2-deficient murine model of MDC1A. In the case of dystrophin further studies were undertaken in order to determine if increasing age had any effects on cerebellar function. It was found that there is no difference in electrophysiological characteristics (RMP, IR, eEPSP) of the cells when compared to appropriate control groups, nor was there any difference when young and aged dystrophin-deficient mdx groups were compared. Evoked IPSP characteristics were examined in young mdx cerebellar Purkinje cells and again no difference was found when compared to wildtype. There was a significant difference in response to the GABAA antagonist bicuculline, with wildtype increasing eEPSP amplitude by almost double that found in mdx. There was no difference in short term plasticity as measured by paired pulse facilitation in any of these groups. There was no difference in paired pulse depression at the inhibitory interneuron- Purkinje cell synapse of young wildtype and mdx cerebellar Purkinje cells. There a significant blunting of long term depression (LTD, (a form of long term synaptic plasticity) between young wildtype and mdx. When young wildtype animals were compared to aged wildtype animals LTD was found to be similar, when young mdx was compared to aged mdx, there was a recovery of LTD seen in the aged population. There was also significant differences in LTD found when littermate controls were compared to dy2J (laminin α2 mutants). A third of the phenotypic animals (dy2J) potentiated. Finally when rebound potentiation (a GABA-ergic form of long term synaptic plasticity in the cerebellum) was compared in young wildtype and mdx mice, mdx mice displayed depression, rather than the expected potentiation in contrast to potentiation (or no change) as seen in all wildtype cells.
83

Initiation and progression of cardiomyopathy in sarcoglycan deficiency /

Wheeler, Matthew Thomas. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Molecular Genetics and Cell Biology, August 2003. / CD-ROM reproduces dissertation in PDF format; Adobe Acrobat required. Includes bibliographical references. Also available on the Internet.
84

Dysferlin and its role in the pathogenesis of muscular dystrophy

Hofhuis, Julia 19 November 2013 (has links)
No description available.
85

The role of dystroglycan in muscular dystrophy and synaptogenesis /

Montanaro, Federica. January 1999 (has links)
alpha- and beta-dystroglycan (DG) were first identified as members of an oligomeric, transmembrane complex expressed in muscle and linking laminin (LN) in the extracellular matrix (ECM) to dystrophin in the submembraneous cytoskeleton. This dystrophin-associated glycoprotein complex (DGC) has been proposed to perform a structural role in skeletal muscle, its loss leading to loss of membrane integrity, muscle fiber degeneration and muscular dystrophy. alpha- and beta-DG appear to form the core of the DGC since alpha-DG is a high affinity LN receptor while beta-DG is a transmembrane protein that anchors alpha-DG to the membrane and interacts with dystrophin intracellularly. In order to determine the involvement of DG in skeletal muscle homeostasis and in LN assembly, we generated mouse muscle cell lines deficient in DG expression. Extensive characterization of these cells revealed that DG is essential for LN assembly on the surface of mature myotubes but that it is not involved in the maintenance of membrane integrity in culture. However, DG-deficient cells show increased apoptotic cell death during and after the period of myoblast differentiation into myotubes, indicating that DG is important for muscle cell survival. / The ECM molecule agrin has been implicated in the induction of acetylcholine receptor (AChR) aggregation at the neuromuscular junction (NMJ). The C-terminus of agrin shares significant homology with the region of LN that interacts with alpha-DG; we therefore reasoned that alpha-DG could be an agrin receptor. Ligand overlay assays revealed that alpha-DG binds agrin with high affinity and antibody perturbation experiments indicated that alpha-DG is involved in agrin-induced aggregation of AChRs. The role of alpha-DG in AChR aggregation was further studied using the DG deficient muscle cell lines. We found that alpha-DG is involved in the later stages of agrin-induced AChR aggregation. / We further localized DG and two of its intracellular ligands, dystrophin and its autosomal homologue utrophin, to a synaptic layer in the retina suggesting a role for DG in central nervous system synapses. DG, utrophin and LN are also co-expressed around blood vessels indicating a possible function in blood-brain barrier homeostasis.
86

Development of helper-dependent adenovirus for gene expression in muscle

Deol, Jatinderpal. January 2001 (has links)
Duchenne muscular dystrophy (DMD) is characterized by necrosis and progressive loss of muscle fibers. DMD patients have a mutation in the gene encoding dystrophin, a large membrane-associated cytoskeletal protein on the cytoplasmic side of the sarcolemma. Gene therapy using fully deleted adenoviral vectors shows great potential for the eventual treatment of DMD and other genetic diseases. These vectors are less immunogenic than their predecessors and have the capacity to carry large DNA inserts such as the full-length dystrophin (12 kb). However, the lack of viral genes results in a weakened and subsiding (short) transgene expression in muscle. Findings in the lung and liver have shown the adenoviral E4 region, in particular E4 open reading frame 3 (ORF3) to contribute to the maintenance of transgene expression. We constructed an adenovirus in which E4 ORF3 was reintroduced into a fully-deleted adenovirus along with full-length dystrophin (AdCBDysORF3). Dystrophin levels produced by AdCBDysORF3 were found to be not sustained in mdx mice, dropping significantly by day 90. However, expression levels did increase when AdCBDysORF3 was complemented with other viral proteins such as EIB. Likewise, increasing the expression of the primary adenovirus receptor (CAR) in muscle also resulted in a higher initial dystrophin expression in myofibers.
87

Cerebellar synaptic plasticity in two animal models of muscular dystrophy

Anderson, Jennifer Louise, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
Duchenne muscular dystrophy (DMD) and congenital muscular dystrophy 1A (MDC1A) are the two most common forms of muscular dystrophy in humans, caused by mutations in dystrophin and laminin α2 genes respectively. Both are severe forms of the disease that lead to premature death due and are both now known to have a significant effect on the central nervous system. This project investigated the role of both proteins involved in each of these diseases in cerebellar Purkinje cells of two murine models of disease: the mdx mouse a dystrophin-deficient model of DMD and the dy2J a laminin α2-deficient murine model of MDC1A. In the case of dystrophin further studies were undertaken in order to determine if increasing age had any effects on cerebellar function. It was found that there is no difference in electrophysiological characteristics (RMP, IR, eEPSP) of the cells when compared to appropriate control groups, nor was there any difference when young and aged dystrophin-deficient mdx groups were compared. Evoked IPSP characteristics were examined in young mdx cerebellar Purkinje cells and again no difference was found when compared to wildtype. There was a significant difference in response to the GABAA antagonist bicuculline, with wildtype increasing eEPSP amplitude by almost double that found in mdx. There was no difference in short term plasticity as measured by paired pulse facilitation in any of these groups. There was no difference in paired pulse depression at the inhibitory interneuron- Purkinje cell synapse of young wildtype and mdx cerebellar Purkinje cells. There a significant blunting of long term depression (LTD, (a form of long term synaptic plasticity) between young wildtype and mdx. When young wildtype animals were compared to aged wildtype animals LTD was found to be similar, when young mdx was compared to aged mdx, there was a recovery of LTD seen in the aged population. There was also significant differences in LTD found when littermate controls were compared to dy2J (laminin α2 mutants). A third of the phenotypic animals (dy2J) potentiated. Finally when rebound potentiation (a GABA-ergic form of long term synaptic plasticity in the cerebellum) was compared in young wildtype and mdx mice, mdx mice displayed depression, rather than the expected potentiation in contrast to potentiation (or no change) as seen in all wildtype cells.
88

Molecular genetic analysis of a New South Wales muscular dystrophy cohort

Taylor, Peter John, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
Duchenne muscular dystrophy (DMD) is an X-linked lethal condition associated with high morbidity and mortality. There is currently no cure for this disease. Several gene-based therapeutic approaches for treating DMD are currently under development but all are dependent on the knowledge of the causative dystrophin gene mutation. A combined mutation detection approach consisting of a quantitative PCR based analysis and DNA sequencing of the dystrophin gene resulted in a mutation etection rate of 96% in the New South Wales (NSW) DMD cohort. The proportion of exon duplication mutations was twice that generally reported for similar patient opulations. The clinical utility of the combined mutation protocol for DMD carrier testing clarified the carrier status of an additional one-third (33%) of female relatives compared to a conventional approach of biochemical, pedigree and linkage studies. The generally accepted view that two-thirds of mothers of isolated cases of DMD are themselves mutation carriers is challenged. Although this assumption is valid for duplication and DNA sequence mutations, it is not valid for deletion mutations in the NSW cohort. The incidence of new cases of DMD in the New South Wales population was educed from approximately 1 in 3594 live male births to 1 in 6022 live male births over a 25 year period, indicative of a significant effect of the combination of genetic counselling and improved methods of carrier detection over that period. In a study of a cohort of boys with DMD, who had both psychological and mutational analysis, it was shown that mutations affecting the shorter, C-terminal isoforms of dystrophin are associated with decreased mean intellectual function. A hypothesis is presented that mutations within the long 5' untranslated region of the Dp140 isoform are unlikely to significantly affect expression of this brain-expressed isoform. During the course of studying the NSW DMD cohort a family was identified which exhibited X-linkage and a unique clinical presentation involving episodes of severe and prolonged muscle weakness. A novel variant in the pyruvate dehydrogenase E1 alpha subunit (PDHA 1) was identified. The phenotypic effect of this variant is not proven but a body of evidence implicates this as likely to be causative of the observed phenotype.
89

Lactic dehydrogenase isoenzymes in normal and dystrophic lamb tissues [Part] I. [Part] II. Selenium metabolism in the sheep /

Paulson, Gaylord. January 1967 (has links)
Thesis (Ph. D.)--University of Wisconsin, 1996. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
90

Treatment of Duschenne Muscular Dystrophy with exon skipping antisense oligonucleotides using novel polyethylenimine carriers /

Sirsi, Shashank Ramesh. Lutz, Gordon J. January 2007 (has links)
Thesis (Ph. D.)--Drexel University, 2007. / Includes abstract and vita. Includes bibliographical references (leaves 94-110).

Page generated in 0.0663 seconds