Spelling suggestions: "subject:"dysferlin"" "subject:"dysferline""
1 |
Evaluation de trois approches de thérapie génique pour le traitement des dysferlinopathies : miniprotéine, compensation et trans-épissage / Evaluation of three approaches of gene therapy for the treatment of dysferlinopathies : miniprotein, compensation and trans-splicingMonjaret, François 11 December 2012 (has links)
Les dysferlinopathies sont des maladies musculaires dues à une déficience en protéine dysferline, codée par le gène DYSF. Dans ce travail de thèse, trois approches thérapeutiques ont été évaluées pour ces pathologies, sur des modèles cellulaires et murins. Un variant transcriptionnel court de la dysferline a été vectorisé dans un AAV8r et injecté dans le modèle murin Bla/J, déficient en dysferline. L’analyse des muscles des animaux traités montre une augmentation de la résistance des fibres musculaires au stress mécanique, mais n’apporte pas de correction histologique. Cette étude souligne également la toxicité de cette miniprotéine. L’anoctamine 5, impliquée dans des pathologies et des activités similaires à la dysferline, a été testée en tant que protéine compensatrice. L’anoctamine 5 surexprimée dans le modèle Bla/J ne permet pas la restauration d’un phénotype normal. La compensation de DYSF par ANO5 n’est donc pas une voie thérapeutique à exploiter pour les dysferlinopathies. Enfin, une thérapie génique par chirurgie de l’ARN dysferline a été évaluée en utilisant le trans-épissage médié par le splicéosome (SMaRT). La preuve de principe de la reprogrammation d’un minigène dysferline a été faite (ARN et protéine trans-épissée obtenus in vitro). L’efficacité du SMaRT dans un contexte endogène s’est en revanche révélée faible, et n’a pas permis la restauration d’une protéine dysferline fonctionnelle dans des myoblastes humains. De plus, l’observation de l’expression de protéines directement à partir du RTM (RNA-trans-splicing molecule) a fait apparaître des limites à l’utilisation du SMaRT pour la thérapie génique, et en particulier pour les dysferlinopathies. / Dysferlinopathies are muscular diseases due to mutations in DYSF gene, inducing dysferlin protein deficiency. In this thesis, three therapeutic approaches have been investigated for these pathologies, on cell or mice models. A short transcriptional dysferlin variant has been injected into Bla/J dysferlin deficient mouse model, using AAV8r vector. Muscle fibers of treated animals displayed an increased resistance to mechanical stress without therapeutic benefit. These experiments also pointed out the toxicity of this strategy. A protein compensation approach has been tested using anoctamin 5, known to be involved in pathologies and activities similar to dysferlin’s ones. AAVr mediated Anoctamin 5 overexpression in Bla/J model does not rescue their muscle phenotype. Overexpression of ANO5 does not seem to be a valuable therapeutic strategy for dysferlin deficiency. Dysferlin RNA surgery was evaluated as a possible genetic therapy using Spliceosome-Mediated RNA Trans-splicing (SMaRT). On a Minigene target, SMaRT is able to induce RNA reprogramming by trans-splicing, and produce the corresponding protein. But efficiency is by far decreased in endogenous context and not good enough to restore functional dysferlin in human myoblasts. Moreover, we described proteins resulting from RNA-trans-splicing molecule (RTM) self-expression, limiting the value of SMaRT as therapeutic strategy, especially for dysferlinopathies.
|
2 |
Dysferlin and its role in the pathogenesis of muscular dystrophyHofhuis, Julia 19 November 2013 (has links)
No description available.
|
3 |
The role of myocardial membrane proteins and myocardial oedema in postoperative myocardial dysfunctionEgan, Jonathan Rogers January 2009 (has links)
Doctor of Philosophy(PhD) / The vast majority of children undergoing surgical repair of cardiac lesions do spectacularly well. However a significant proportion, ~ 25%, struggle to progress in the early postoperative period and require additional pharmacological and occasionally mechanical circulatory support. All children typically have some degree of postoperative myocardial dysfunction, with the severe spectrum termed the low cardiac output state (LCOS). LCOS is clinically defined as the requirement for new or escalated inotrope therapy, a widened arteriovenous oxygen difference, cardiac arrest or the need for reinstitution of mechanical circulatory support. LCOS is largely responsible for the morbidity and mortality involved in paediatric cardiac surgery. Despite the predictability of LCOS in the initial postoperative hours, the underlying pathophysiology remains unclear. The period of decline in cardiac function that typifies LCOS is temporally associated with the development of oedema in the tissues of the body, including the heart. This relationship between oedema and dysfunction has increasingly become blurred, with a tendency to elevate the temporal association to a causal link. We sought to explore the causes and contributions to myocardial dysfunction in this setting, including the roles of oedema and ischaemia within the heart. In focusing on oedema and ischaemia we also examined the effects of these insults on relevant myocardial membrane proteins, including those that permit rapid water transport – aquaporins (AQPs), and those involved in membrane mechanics – dystrophin, and membrane repair – dysferlin. Experimental settings which enabled the in vitro dissection of these insults and proteins of interest were combined with a clinically accurate in vivo model. This thesis describes a series of thematically linked experiments that examined LCOS, myocardial oedema and the role of various membrane proteins. We performed isolated cardiomyocyte studies, isolated heart studies as well as a clinically relevant large animal (lamb) cardiopulmonary bypass (CPB) model. Across these models we also explored the role of therapeutically protecting myocardial membranes with Poloxamer 188 (P188) and assessed any influence on myocardial function, oedema and membrane proteins. vi The results from these three models suggest that the clinically accepted dogma of a causative link between myocardial oedema and dysfunction overstates the contribution of myocardial oedema to LCOS. We found that ischaemia/reperfusion was of primary importance in causing myocardial dysfunction. Myocardial oedema without ischaemia had a mild and reversible contribution to myocardial dysfunction, but this was minor in comparison to the gross dysfunction attributable to ischaemia. Isolated cardiomyocytes, with induced oedema, functioned well. Whilst ischaemic cardiomyocytes, with less swelling still had severe contractile dysfunction. Isolated hearts, perfused with an oedema inducing crystalloid perfusate developed myocardial oedema and had minimal reversible systolic and diastolic dysfunction. Isolated hearts which experienced global ischaemia had comparable degrees of myocardial oedema, and significantly greater degrees of myocardial dysfunction that increased in severity with increasing duration of ischaemia. In the lamb CPB model, only those lambs which underwent aortic cross clamping and had a period of ischaemia had poor myocardial function. These lambs also had swollen hearts, raised myocardial AQP1 mRNA and reduced membrane dysferlin protein expression. Membrane dystrophin protein expression was not altered, somewhat unexpectedly with CPB with or without ischaemia. Lambs placed on CPB without ischaemia had good myocardial function, minimal oedema and unchanged membrane protein expression during the survival period. In a blinded lamb CPB trial of P188 there were improved haemodynamics and indicies of myocardial function associated with its use. This was also associated with preservation of dysferlin expression and reduced membrane injury. In parallel isolated heart trials of this therapy, there was a reduction in myocardial oedema associated with its use in non-ischaemic experiments. There was also a suggestion of improved diastolic function in ischaemic experiments, but no change in myocardial water content. In conclusion, we have highlighted the primacy of ischaemia/reperfusion over oedema in contributing to LCOS. We have refuted the accepted dogma that myocardial oedema causes significant dysfunction in itself, with important oedema likely to result from ischaemia. We have shown that AQP1 may be involved in the pathogenesis of the capillary leak syndrome. Finally we have hinted at a role for prophylactic P188 in the vii setting of LCOS, possibly highlighting the role of membrane repair in recovery after surgery. Isolated heart trials of P188 further support a non-rheological mechanism of action and also lend support to the causal separation of myocardial oedema and dysfunction. The integral membrane protein dysferlin, rather than dystrophin, is relevant in the setting of LCOS in the current era.
|
4 |
The role of myocardial membrane proteins and myocardial oedema in postoperative myocardial dysfunctionEgan, Jonathan Rogers January 2009 (has links)
Doctor of Philosophy(PhD) / The vast majority of children undergoing surgical repair of cardiac lesions do spectacularly well. However a significant proportion, ~ 25%, struggle to progress in the early postoperative period and require additional pharmacological and occasionally mechanical circulatory support. All children typically have some degree of postoperative myocardial dysfunction, with the severe spectrum termed the low cardiac output state (LCOS). LCOS is clinically defined as the requirement for new or escalated inotrope therapy, a widened arteriovenous oxygen difference, cardiac arrest or the need for reinstitution of mechanical circulatory support. LCOS is largely responsible for the morbidity and mortality involved in paediatric cardiac surgery. Despite the predictability of LCOS in the initial postoperative hours, the underlying pathophysiology remains unclear. The period of decline in cardiac function that typifies LCOS is temporally associated with the development of oedema in the tissues of the body, including the heart. This relationship between oedema and dysfunction has increasingly become blurred, with a tendency to elevate the temporal association to a causal link. We sought to explore the causes and contributions to myocardial dysfunction in this setting, including the roles of oedema and ischaemia within the heart. In focusing on oedema and ischaemia we also examined the effects of these insults on relevant myocardial membrane proteins, including those that permit rapid water transport – aquaporins (AQPs), and those involved in membrane mechanics – dystrophin, and membrane repair – dysferlin. Experimental settings which enabled the in vitro dissection of these insults and proteins of interest were combined with a clinically accurate in vivo model. This thesis describes a series of thematically linked experiments that examined LCOS, myocardial oedema and the role of various membrane proteins. We performed isolated cardiomyocyte studies, isolated heart studies as well as a clinically relevant large animal (lamb) cardiopulmonary bypass (CPB) model. Across these models we also explored the role of therapeutically protecting myocardial membranes with Poloxamer 188 (P188) and assessed any influence on myocardial function, oedema and membrane proteins. vi The results from these three models suggest that the clinically accepted dogma of a causative link between myocardial oedema and dysfunction overstates the contribution of myocardial oedema to LCOS. We found that ischaemia/reperfusion was of primary importance in causing myocardial dysfunction. Myocardial oedema without ischaemia had a mild and reversible contribution to myocardial dysfunction, but this was minor in comparison to the gross dysfunction attributable to ischaemia. Isolated cardiomyocytes, with induced oedema, functioned well. Whilst ischaemic cardiomyocytes, with less swelling still had severe contractile dysfunction. Isolated hearts, perfused with an oedema inducing crystalloid perfusate developed myocardial oedema and had minimal reversible systolic and diastolic dysfunction. Isolated hearts which experienced global ischaemia had comparable degrees of myocardial oedema, and significantly greater degrees of myocardial dysfunction that increased in severity with increasing duration of ischaemia. In the lamb CPB model, only those lambs which underwent aortic cross clamping and had a period of ischaemia had poor myocardial function. These lambs also had swollen hearts, raised myocardial AQP1 mRNA and reduced membrane dysferlin protein expression. Membrane dystrophin protein expression was not altered, somewhat unexpectedly with CPB with or without ischaemia. Lambs placed on CPB without ischaemia had good myocardial function, minimal oedema and unchanged membrane protein expression during the survival period. In a blinded lamb CPB trial of P188 there were improved haemodynamics and indicies of myocardial function associated with its use. This was also associated with preservation of dysferlin expression and reduced membrane injury. In parallel isolated heart trials of this therapy, there was a reduction in myocardial oedema associated with its use in non-ischaemic experiments. There was also a suggestion of improved diastolic function in ischaemic experiments, but no change in myocardial water content. In conclusion, we have highlighted the primacy of ischaemia/reperfusion over oedema in contributing to LCOS. We have refuted the accepted dogma that myocardial oedema causes significant dysfunction in itself, with important oedema likely to result from ischaemia. We have shown that AQP1 may be involved in the pathogenesis of the capillary leak syndrome. Finally we have hinted at a role for prophylactic P188 in the vii setting of LCOS, possibly highlighting the role of membrane repair in recovery after surgery. Isolated heart trials of P188 further support a non-rheological mechanism of action and also lend support to the causal separation of myocardial oedema and dysfunction. The integral membrane protein dysferlin, rather than dystrophin, is relevant in the setting of LCOS in the current era.
|
5 |
Metodutveckling för att studera dysferlin i neutrofila granulocyter / Development of method for studies of dysferlin in neutrophilic granulocytesJacobsson, Jennifer January 2010 (has links)
De neutrofila granulocyterna ingår i det icke specifika immunförsvaret och fagocyterarmikroorganismer och rester från kroppens egna celler. Neutrofilen innehåller fyra olika typerav granula, som vid aktivering av cellen kan uppregleras till plasmamembranet. Proteinetdysferlin har bevisats förekomma i membranet i en del av dessa granuler. Det tros ha en roll imembran fusion och underhåll av membranet.Dysferlin är ett transmembrant protein av typ II, och proteinet saknas i funktionellt tillståndvid sjukdomstillstånden Limb-Girdle muskeldystrofi 2B och Miyoshi myopati. I arbetetkommer en metod att utvecklas som skall användas till att studera proteinet dysferlin hos deneutrofila granulocyterna vid olika funktionella tillstånd. Mängden dysferlin iplasmamembranet hos oaktiverade och aktiverade celler jämförs också i arbetet.Antikroppar har använts för att märka in dysferlinet. En primär antikropp som binder tillproteinet och en sekundär antikropp som binder till den primära. Den sekundära antikroppenhar en fluorescent färg konjugerad. För analyserna har en FACS som ger diagram överfluorescenssignalen använts och ett konfokalmikroskop som avbildar cellen i olika skikt, vilkakan användas för att ta fram en tredimensionell bild av cellen.Både intracellulär och extracellulär inmärkning av dysferlin har gjorts och olika parametrarhar varierats mellan försöken. FACS analyserna har visat på att dysferlin möjligtvis skullekunna finnas i små mängder i plasmamembranet hos oaktiverade celler. Mängden dysferlin iplasmamembranet ökar vid aktivering av cellen, till följd av uppreglering av granula. Studier ikonfokalmikroskopet har visat på att dysferlin finns i cellmembranet hos aktiverade celler ochatt det finns lokaliserat till cytoplasman hos oaktiverade celler.
|
6 |
Degeneração e regeneração muscular em modelos murinos com deficiência de disferlina / Muscle degeneration and regeneration in dysferlin-deficient murine modelsIshiba, Renata 07 April 2017 (has links)
A distrofia muscular de cintura 2B (LGMD2B) é uma doença neuromuscular causada pela redução ou ausência da proteína sarcolemal disferlina. A disferlina está envolvida no reparo de membrana por atuar no tráfego e fusão de vesículas após estresse mecânico e, quando deficiente, as alterações nesta via levam à degeneração progressiva e irreversível das fibras musculares. A disferlina também tem sido implicada na inflamação e na miogênese durante a degeneração e regeneração muscular. Recentemente, identificou-se um tricomplexo formado pela disferlina com duas proteínas citoplasmáticas, FAM65B e HDAC6, no início da diferenciação de mioblastos. Investigar a regulação destas interações é importante para avançar na compreensão das funções da disferlina e seu papel na função muscular. Neste estudo, a miogênese e o reparo muscular foram investigados in vivo e in vitro em modelos com deficiência de disferlina. Para estudar o processo regenerativo in vivo, utilizamos um modelo de eletroporação para induzir degeneração/regeneração no músculo distrófico levemente afetado do camundongo disferlina-deficiente SJL/J. A avaliação histopatológica e a expressão relativa dos genes Pax7, Myf5, MyoD e miogenina foram acompanhadas durante a recuperação muscular em diferentes tempos após a lesão. Além disso, investigamos os efeitos da deficiência de disferlina na expressão dos genes Fam65b e Hdac6. Observamos um curso de tempo alterado do processo de degeneração e regeneração, com notável capacidade regenerativa nos camundongos disferlina-deficientes, caracterizada por uma resposta mais rápida e eficaz nos primeiros dias após a lesão, em comparação com os camundongos normais. Além disso, Fam65b e Hdac6 foram ativados nos estágios iniciais da regeneração muscular, também com expressão mais elevada de ambos os genes no camundongo SJL/J. Esses resultados podem estar relacionados à uma possível condição pré-ativada do processo regenerativo no músculo de camundongos distróficos jovens. Para os experimentos in vitro, utilizamos células musculares humanas de pacientes com LGMD2B, com deficiência total de disferlina. A diferenciação muscular induziu a formação de miotubos mais finos e com menor frequência de núcleos por miotubo, sugerindo uma progressão retardada da formação de miotubos em células com LGMD2B. A expressão de mRNA de MYOD e FAM65B não foi aparentemente afetada pela deficiência de disferlina durante a diferenciação, enquanto HDAC6 apresentou um pico transitório após 24 horas, apenas nas células normais. Além disso, o pico da miogenina ocorreu mais cedo nas células normais. Portanto, sugerimos que a disferlina estaria menos envolvida nos eventos iniciais de formação de pequenos miotubos, mas poderia desempenhar um papel importante nos estágios posteriores de diferenciação, que envolvem crescimento e alongamento de miotubos. Estes resultados fornecem dados interessantes para investigações adicionais de como a deficiência de disferlina afeta os reguladores miogênicos durante a diferenciação. Em conjunto, nossos dados sugerem que a deficiência de disferlina provoca alterações temporais na progressão dos eventos de regeneração muscular e de miogênese. A identificação de uma possível regulação dos componentes do tricomplexo pela disferlina pode indicar novas direções para investigar esta via como um potencial alvo para terapias / Limb girdle muscular dystrophy 2B (LGMD2B) is a neuromuscular disease caused by reduction or absence of the sarcolemmal protein dysferlin. Dysferlin is involved in membrane repair by acting on vesicular traffic and fusion after mechanical stress and, when deficient, changes in this pathway lead to progressive and irreversible degeneration of muscle fibers. Dysferlin has also been implicated in inflammation and myogenesis during muscle degeneration and regeneration. Recently, a tricomplex formed by dysferlin with two cytoplasmic proteins, FAM65B and HDAC6, was identified at the earlier stages of myoblast differentiation. Investigating the regulation of these interactions is important to advance in the understanding of the functions of dysferlin and its role in muscle function. In this study, myogenesis and muscle repair were investigated in vivo and in vitro in models with dysferlin deficiency. To study this effect in the regenerative process of muscle in vivo, we used a model of electroporation inducing muscle degeneration/regeneration in the mildly affected dystrophic muscle of dysferlin-deficient SJL/J mouse. The histopathological evaluation and the relative expression of the genes Pax7, Myf5, MyoD and myogenin were accompanied during muscle recovery at different time points after injury. In addition, we investigated the effects of dysferlin deficiency in the expression of genes Fam65b and Hdac6. We observed an altered time course of the degeneration and regeneration process, with remarkable regenerative capacity in dysferlin-deficient mice, characterized by a faster and effective response in the first days after injury, as compared to normal mice. Moreover, Fam65b and Hdac6 were activated at the early stages of muscle regeneration, also with higher expression of both genes in the SJL/J mouse. These results may have been due to a possible pre-activated condition of the regenerative process in the muscle of young dystrophic mice. For the in vitro experiments, we used human muscle cells from patients with LGMD2B, with total deficiency of dysferlin. The muscular differentiation induced the formation of thinner myotubes and reduced frequency of myonuclei per myotube, suggesting a delayed progression of myotube formation in LGMD2B cells. mRNA expression of MYOD and FAM65B was not apparently affected by dysferlin deficiency during differentiation, while HDAC6 exhibited a transient peak, only in healthy cells, after 24 hours. In addition, the myogenin peak occurred earlier in healthy cells. Thus, we suggested that dysferlin would be less involved in the first events of formation of early small myotubes, but could play an important role in the later stages of differentiation, which involves myotube growth and elongation. These results provide interesting data for further investigation of how dysferlin deficiency affects myogenic regulators during differentiation. Taken together, our data suggest that dysferlin deficiency causes temporal changes in the progression of the muscle regeneration and myogenesis events. The identification of possible regulation of tricomplex components by dysferlin may indicate new directions for investigating this pathway as a potential target for therapies
|
7 |
Mise au point d'outils novateurs pour l'identification de mutations pathogènes : le cas des dysferlinopathies / Development of new tools for the identification of disease-causing mutations in dysferlinopathiesKergourlay, Virginie 20 November 2014 (has links)
Le diagnostic des maladies génétiques est difficile à émettre. En effet, il est souvent difficile de déterminer comment une mutation va entrainer la pathologie. Le but de cette thèse est de développer des outils permettant de répondre à cette interrogation. Les mutations peuvent entrainer des anomalies à différents niveaux, différentes outils ont ainsi été développées en parallèle afin de pouvoir détecter différents types d'anomalies. Ces outils ont été développés en utilisant comme modèle une maladie génétique appartenant à la famille des myopathies, entrainant une dégénérescence des muscles des patients. Les travaux de cette thèse ont permis de confirmer le caractère délétère de certaines mutations en démontrant des anomalies dans un mécanisme appelé « épissage » qui permet la transmission de l'information contenue dans le génome. Les mutations en empêchant cette transmission vont ainsi être responsables de la maladie. / Diagnosis of genetic diseases is a difficult task. Indeed, it is often difficult to determine if mutations detected in patients will be responsible of the disease. The aim of this thesis is to develop tools allowing answering on this question. Mutations can have deleterious effects to several levels, thus different tools have been develop in parallel in order to detect different kind of abnormalities. These tools have been developed using as model a genetic disease belonging to the family of myopathy, leading to a degeneration of patients muscles. These thesis works have confirmed the deleterious effect on some mutations in a mechanism named "splicing" which allow transmission of the genome's information. Mutations preventing the transmission will thus be responsible of the disease.
|
8 |
Histopathological Characterization of the Dystrophic Phenotype and Development of Therapeutic Candidates for a Gene Therapy Pre-Clinical Study in Dysferlin Deficient MiceFridman, Leticia 26 September 2016 (has links)
Dysferlin deficient muscular dystrophy is a devastating disease that leads to loss of mobility and quality of life in patients. Dysferlin is a 230 kD protein primarily expressed in skeletal muscle that functions in membrane resealing. Dysferlin loss of function leads to a decrease in the membrane resealing response after injury in skeletal muscle, which is thought to cause degeneration of the musculature over time. Dysferlin cDNA is 7.4 kb and exceeds AAV packaging capacity of ~ 5kb. This thesis focuses on the generation of mini dysferlin mutants that can be packaged in AAV for downstream testing of therapeutic efficacy. In addition, this thesis creates the groundwork for preclinical studies in mice that can potentially be translated to human patients. A mouse model for dysferlin deficiency was characterized and key disease phenotypes were identified. In addition, cell lines carrying a genetically encoded calcium indicator protein, gCaMP, were established to measure mini dysferlin resealing capacity and for downstream testing in vivo.
|
9 |
RNA-based therapies for dysferlinopathies / Utilisation d'acide ribonucléique pour le traitement des dysferlinopathiesPhilippi, Susanne 25 September 2014 (has links)
L’épissage en cis des précurseurs d’ARN messager (pre-ARNm) est une stratégie intéressante afin de réparer des gènes dont la régulation transcriptionnelle est déterminante pour la fonction de la protéine. Les mutations touchant le gène dysferline (DYSF) sont liées au développement de dystrophies musculaires: la dystrophie musculaire des ceintures de type 2B et la myopathie distale de Miyoshi. Une stratégie à modifier l’épissage en cis des pre-ARNm du gène DYSF est le procédé SMaRT (pour spliceosome-mediated mRNA trans-splicing), une technique de réparation de l'ARN messager au moyen d'un complexe de trans-épissage appelé PTM (pour pre-mRNA trans-splicing molecule). Le procédé SMaRT utilisant le complexe PTM permet le remplacement d’importantes portions de pre-ARNm tout en préservant l’intégrité totale du transcrit. Dans un soucis d’obtenir un trans-epissage efficace, seuls les introns codant pour les pre-ARNm de DYSF présentant de forts signaux d’épissage répartis de façon disparate ainsi que des tailles très différentes furent ciblées par les PTMs dans des myoblasts humains ne possédant pas de dysferlin. Le trans-épissage de deux introns ciblés du gène DYSF engendra une formation correcte de la protéine dysferlin dans des mutants DYSF-/- de souris. Les niveaux de protéine fonctionnelle furent toutefois modérés, mais similaires aux taux de récupération obtenus par des stratégies précédentes de trans-épissage ciblant d’autres gènes. Néanmoins, parmi les introns ciblés avec succès dans cette étude et dans des essais précédents, des critères concordants ont pu être identifiés afin de faciliter le choix des introns à cibler pour de futures stratégies de trans-épissage. / RNA-based therapy is an approach to cure genetic disorders with no intervention into endogenous spatiotemporal gene regulation. I established two approaches for the dysferlin gene, (i) spliceosome-mediated pre-mRNA trans-splicing (SmaRT) and (ii) exon-skipping, in order to rescue dysferlin mutations leading to Limb Girdle Muscular Dystrophy 2B and Miyoshi Myopathy. SmaRT permits the correction of numerous mutations of a gene by a single pre-mRNA trans-splicing molecule (PTM) by exchanging multiple exons of a gene for a healthy mRNA sequence. The PTM binds to intronic sequence and competes with the endogenous pre-mRNA for the binding of the spliceosome. I designed PTMs to exchange the 3’ part of the dysferlin messenger and determined two functioning PTMs bytransduction of human myoblasts and intramuscular injection in wild-type and DYSF-/- mice and could show dysferlin protein rescue in DYSF-/- mice.By exon-skipping exons carrying mutations can be excised from pre-mRNA in masking exon or intron internal sequences defining the exon in the splicing process. I employed antisense oligonucleotides (AONs) of tricyclo-DNA in order to excise dysferlin exon 32. It was shown to be particularly feasible for systemic application, making it suitable for diseases affecting different compartments of skeletal muscle and other organs. The dysferlin exon 32 has been shown to be dispensable for known functions of the dysferlin protein. I designed tc-DNA AONs leading to efficient skipping in patient myoblasts and in wild-type mice following intramuscular injection. I am collaborating to investigate effects of exon 32 skipping in an Exon-32-STOP mouse model.
|
10 |
Dysferlin in skeletal and heart muscle: from trafficking to therapyBersch, Kristina 24 August 2017 (has links)
No description available.
|
Page generated in 0.0326 seconds