• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification des mécanismes moléculaires et des approches thérapeutiques innovantes dans les sarcoglycanopathies / Identification of molecular mechanisms and innovative therapeutic approaches in sarcoglycanopathies

Patissier, Cécile 22 June 2016 (has links)
Les sarcoglycanopathies sont des dystrophies musculaires récessives (LGMD2D, E, C, F) causées par des mutations dans les gènes codant les sarcoglycanes (SG) alpha,béta, gamma et delta. Ces protéines transmembranaires font parties d’un complexe interagissant avec la dystrophine, pour protéger les fibres musculaires contre le stress mécanique du à la contraction. La perte de l’expression membranaire d’une des SG peut entrainer l’absence du complexe entier à la membrane. Les mutations trouvées chez des patients sont à 66% des mutations faux-sens ; certaines d’entre-elles peuvent avoir une prévalence importante, comme R77C, la mutation la plus fréquente dans l’alpha-sarcoglycanopathie. Nous avons précédemment démontré que les SGs mutées sont retenues dans le réticulum endoplasmique par le contrôle qualité (ERQC), et qu’il est possible de sauver cette protéine mutée en inhibant l’activité d’une enzyme clé de l’ERQC, l’alpha-mannosidase, par traitement pharmacologique à la Kifunensine. Ce traitement s’est cependant avéré toxique.Ce projet de thèse vise donc à identifier de nouvelles molécules thérapeutiques pour les sarcoglycanopathies. Dans cette optique, nous avons tout d’abord cherché un modèle in vitro nous permettant d’étudier différents mutants d’alpha-SG. Nous avons choisi de générer une lignée cellulaire stable en transduisant les trois SG béta, gamma et delta dans des cellules immortalisées. Cette lignée a ensuite été transfectée avec des mutants d’alpha-SG pour étudier différentes molécules thérapeutiques identifiées dans la littérature. Nos travaux ont permis de démontrer la capacité de 7 molécules à restaurer l’expression membranaire de mutants alpha-SG. Afin de pouvoir valider l’efficacité de ces molécules in vivo, nous avons généré un modèle murin exprimant la mutation béta-T153R. Nos résultats constituent une preuve de principe de l’efficacité de molécules pharmacologiques pour le traitement de patients atteints de sarcoglycanopathies. / Sarcoglycanopathies are recessive muscular dystrophies (LGMD2D, E, C, F) caused by mutations in genes coding for alpha, beta, gamma and delta-sarcoglycans (SG). These transmembrane proteins are part of a complex interacting with dystrophin to protect muscle fibers against mechanical stress due to contraction. Loss of membrane expression of one SG can cause the absence of the entire complex at the membrane. Mutations found in patients are at 66% missense mutations; some of them being highly prevalent like R77C, the most frequent mutation in alpha-sarcoglycanopathy. Interestingly, we previously demonstrated that mutated SGs are retained in the endoplasmic reticulum by the quality control (ERQC), and that it is possible to rescue the mutated protein by inhibiting the activity of a key ERCQ enzyme: alpha-mannosidase I, using Kifunensine as a treatment.The aim of this PhD project is to identify new therapeutic molecules for sarcoglycanopathies. To do so, we first searched an in vitro model to study several alpha-SG mutants. We chose to generate a stable cell line, by transduction of immortalized cells with beta, gamma and delta-SG. This cell line was then transfected with alpha-SG mutants to study different therapeutic molecules identified in literature. Our work demonstrated the ability of 7 molecules to restore the membrane expression of several alpha-SG mutants. To validate the efficacy of those molecules in vivo, we generated a mouse model expressing the beta-T153R mutation. Our results are a proof of principle of the efficacy of pharmacological molecules to treat sarcoglycanopathies.
2

Le déficit en glutathion dans l'insuffisance cardiaque : études dans plusieurs modèles expérimentaux et chez les patients

Khouzami, Lara 13 March 2009 (has links)
Outre son role majeur dans la resistance cellulaire au stress oxydant, le tripeptide glutathion (L-ƒÁ glutamyl- cysteinyl-glycine) est essentiel a la survie cellulaire. Un deficit en glutathion, associe a un stress oxydant, est un trait commun a plusieurs maladies chroniques inflammatoires et degeneratives. Dans le cadre de ces differentes pathologies, plusieurs etudes ont montre que la prise orale de N-acetylcysteine (NAC), un precurseur de glutathion, ameliorait l'etat des patients. Le stress oxydant et l'inflammation sont deux caracteristiques principales de l'insuffisance cardiaque et des dystrophies musculaires. Nous avons pose l'hypothese d'un deficit en glutathion dans ces maladies et les benefices possibles d'un traitement par le NAC. Dans le modele du rat developpant une insuffisance cardiaque post-infarctus, nous montrons qu'il existe un deficit en glutathion tissulaire. Un mois de traitement oral par le NAC, donne en curatif post-infarctus, restaure le taux de glutathion cardiaque, reduit le stress oxydant, et interrompt le cycle vicieux inflammation/mort cellulaire, TNF/TNF-R1/NSMase/ caspase-3/apoptose. Un deficit en glutathion systemique et tissulaire caracterise aussi les souris LmnaH222P/H222P de 6-7 mois developpant une cardiomyopathie dilatee, modele de la cardiomyopathie associee a la dystrophie musculaire dfEmery Dreifuss. Un mois de traitement oral par le NAC reduit chez les souris de 7 mois la dilatation ventriculaire gauche et la dysfonction contractile, limite la progression de la fibrose cardiaque et lfinflammation. Ceci est associe a une repletion en glutathion et une normalisation de l'expression des enzymes du metabolisme du glutathion, a une diminution du stress oxydant et de l'expression du TNF. Une premiere etude chez les patients de chirurgie cardiaque (n=91) nous a permis de mettre en evidence que : d'une part, il existait un deficit en glutathion auriculaire chez les patients de la classe NYHA IV compares aux patients de la classe NYHA I. D'autre part, les patients asymptomatiques (classe NYHA I) presentaient un deficit en glutathion sanguin, compares aux individus sains, aggrave chez les patients symptomatiques (classes NYHA II a IV). Le deficit en glutathion sanguin chez les patients asymptomatiques precede lfelevation du taux sanguin de TNFR1, un marqueur standard du degre de severite de l'insuffisance cardiaque. Une seconde etude, chez des patients porteurs dfune mutation de la lamine (n=28) et susceptibles de developper une cardiomyopathie dilatee d'Emery Dreifuss, montre que certains de ces patients presentent un deficit en glutathion sanguin, associe chez un seul de ces patients a un taux eleve de TNFR1. L'analyse comparee des donnees biochimiques et cliniques est en cours. Les souris DMDmdx4cv sont un modele experimental de la dystrophie musculaire de Duchenne (DMD), mais ne developpent que tardivement la maladie cardiaque. Nous observons une augmentation du taux du glutathion systemique chez les souris de plus de 10 semaines. Un traitement oral avec un inhibiteur de synthese du glutathion a faible dose, le Lbuthionine sulfoximine (5 mM BSO), ramene le taux de glutathion systemique chez la souris DMDmdx4cv au taux chez la souris sauvage, mais provoque des alterations des cardiomyocytes identifiees par immunohistochimie, des micronecroses, des anomalies de capillaires et des anomalies mitochondriales observees en microscopie electronique. En conclusion, le deficit en glutathion est un evenement precoce et durable au cours de l'insuffisance cardiaque, d'origine ischemique ou genetique. Les perspectives offertes par ces resultats sont: 1) le test du glutathion sanguin pour le depistage de sujets asymptomatiques a risque; 2) l'indication de NAC aux patients cardiaques, en complement du traitement courant / The tripeptide glutathione (L-? -glutamyl-cysteinyl-glycine) does not only play a major in cellular resistance to oxidative stress, but is also essential to cell survival. A deficit in glutathione, associated with oxidative stress, is a common hallmark of several chronic inflammatory and neurodegenerative diseases. In different examples, several studies reported that oral treatment with N-acetylcysteine (NAC), a glutathione precursor, improved patient status. Oxidative stress and inflammation are two main characteristics of heart failure (HF) and muscular dystrophy. We hypothesized that glutathione deficiency occurred in these diseases and that treatment with NAC might be beneficial. In post-myocardial infarction (MI) rats, with established chronic HF, we show that cardiac tissue is depleted in glutathione. Curative 1-month oral NAC treatment replenishes cardiac tissue glutathione, reduces oxidative stress and disrupts the vicious inflammation/cell death, TNF/TNF-R1/N-SMase/ caspase-3/ apoptosis cycle. Deficit in serum and cardiac glutathione also characterize 6- to 7-month old LmnaH222P/H222P mice with dilated cardiomyopathy (DCM), a model of the cardiomyopathy associated with Emery Dreifuss muscular dystrophy (EDMD), One-month oral NAC treatment reduces left ventricular dilation and contractile dysfunction, limits the progression of cardiac fibrosis and inflammation in 7-month old LmnaH222P/H222P mice. This is associated with glutathione repletion and normalization of glutathione metabolism enzymes, and reduction of oxidative stress and TNF expression. In a first study in cardiac surgery patients (n=91) we show that: on the one hand, atrial glutathione is depleted in patients of NYHA class IV compared with asymptomatic patients of NYHA class I. On the other hand, asymptomatic patients of NYHA class display a deficiency in blood glutathione compared with healthy controls that worsens in asymptomatic patients of NYHA class II-IV. Blood glutathione deficiency in asymptomatic patients precedes elevation of blood TNFR1, a standard marker of HF severity. A second study, in patients with lamin mutation (n=28), prone to develop an Emery Dreifuss DCM, shows that a number of patients display blood glutathione deficiency, with one patient having a high blood TNFR1 level. Analysis of clinical data is underway. DMDmdx4cv mice are an experimental model of Duchenne muscular dystrophy. We observe an increase in blood glutathione in 10-week-old mice and older. Oral treatment with a low dose of L-buthionine sulfoximine (5 mM BSO), an inhibitor of glutathione synthesis, resumes blood glutathione in DMDmdx4cv mice to the control value in WT mice, but produces alterations in cardiomyocytes identified by immunohistochemistry and micronecrosis, capillary and mitochondrial abnormalities observed by electronic microscopy. In conclusion, glutathione deficiency is an early and lasting event in ischemic or genetically-linked HF. These results pave the way for two possible applications: 1) blood glutathione test for the screening of asymptomatic individuals at risk for HF; 2) NAC indication to cardiac patients in addition to current treatment
3

RNA-based therapies for dysferlinopathies / Utilisation d'acide ribonucléique pour le traitement des dysferlinopathies

Philippi, Susanne 25 September 2014 (has links)
L’épissage en cis des précurseurs d’ARN messager (pre-ARNm) est une stratégie intéressante afin de réparer des gènes dont la régulation transcriptionnelle est déterminante pour la fonction de la protéine. Les mutations touchant le gène dysferline (DYSF) sont liées au développement de dystrophies musculaires: la dystrophie musculaire des ceintures de type 2B et la myopathie distale de Miyoshi. Une stratégie à modifier l’épissage en cis des pre-ARNm du gène DYSF est le procédé SMaRT (pour spliceosome-mediated mRNA trans-splicing), une technique de réparation de l'ARN messager au moyen d'un complexe de trans-épissage appelé PTM (pour pre-mRNA trans-splicing molecule). Le procédé SMaRT utilisant le complexe PTM permet le remplacement d’importantes portions de pre-ARNm tout en préservant l’intégrité totale du transcrit. Dans un soucis d’obtenir un trans-epissage efficace, seuls les introns codant pour les pre-ARNm de DYSF présentant de forts signaux d’épissage répartis de façon disparate ainsi que des tailles très différentes furent ciblées par les PTMs dans des myoblasts humains ne possédant pas de dysferlin. Le trans-épissage de deux introns ciblés du gène DYSF engendra une formation correcte de la protéine dysferlin dans des mutants DYSF-/- de souris. Les niveaux de protéine fonctionnelle furent toutefois modérés, mais similaires aux taux de récupération obtenus par des stratégies précédentes de trans-épissage ciblant d’autres gènes. Néanmoins, parmi les introns ciblés avec succès dans cette étude et dans des essais précédents, des critères concordants ont pu être identifiés afin de faciliter le choix des introns à cibler pour de futures stratégies de trans-épissage. / RNA-based therapy is an approach to cure genetic disorders with no intervention into endogenous spatiotemporal gene regulation. I established two approaches for the dysferlin gene, (i) spliceosome-mediated pre-mRNA trans-splicing (SmaRT) and (ii) exon-skipping, in order to rescue dysferlin mutations leading to Limb Girdle Muscular Dystrophy 2B and Miyoshi Myopathy. SmaRT permits the correction of numerous mutations of a gene by a single pre-mRNA trans-splicing molecule (PTM) by exchanging multiple exons of a gene for a healthy mRNA sequence. The PTM binds to intronic sequence and competes with the endogenous pre-mRNA for the binding of the spliceosome. I designed PTMs to exchange the 3’ part of the dysferlin messenger and determined two functioning PTMs bytransduction of human myoblasts and intramuscular injection in wild-type and DYSF-/- mice and could show dysferlin protein rescue in DYSF-/- mice.By exon-skipping exons carrying mutations can be excised from pre-mRNA in masking exon or intron internal sequences defining the exon in the splicing process. I employed antisense oligonucleotides (AONs) of tricyclo-DNA in order to excise dysferlin exon 32. It was shown to be particularly feasible for systemic application, making it suitable for diseases affecting different compartments of skeletal muscle and other organs. The dysferlin exon 32 has been shown to be dispensable for known functions of the dysferlin protein. I designed tc-DNA AONs leading to efficient skipping in patient myoblasts and in wild-type mice following intramuscular injection. I am collaborating to investigate effects of exon 32 skipping in an Exon-32-STOP mouse model.
4

Rôle de la cavéoline-3 et de la mécanique des cavéoles dans la physiopathologie du muscle / Role of caveolin-3 and caveolae mechanics in muscle pathophysiology

Dewulf, Melissa 29 March 2018 (has links)
Les cavéoles sont des invaginations de la membrane plasmique qui nécessitent les cavéolines pour leur biogénèse. Récemment, mon laboratoire d’accueil a décrit un nouveau rôle pour les cavéoles dans la réponse au stress mécanique (Sinha et al, Cell, 2011). Des mutations de la Cavéoline-3 (Cav3), isoforme spécifique du muscle, qui mènent à la rétention de la protéine dans l’appareil de Golgi, ont été décrites dans certaines dystrophies musculaires (DM). Mon projet consiste en l’identification du lien fonctionnel entre les mutations de la Cavéoline-3 et les dystrophies musculaires, qui ont comme phénotype principal un défaut d’intégrité et de réparation membranaire et des dérégulations dans l’homéostasie du muscle.Dans des myotubes humains provenant d’un patient portant la mutation Cav3-P28L ou Cav3-R26Q, j’ai pu montré une diminution de la quantité de cavéoles à la membrane plasmique. En conséquence, les myotubes mutants ne sont plus capables de tamponner l’augmentation de la tension membranaire provoquée par un stress mécanique, ce qui conduit à un défaut d’intégrité membranaire. J’ai aussi montré que la voie de l’interleukin-6 (IL6), importante pour l’homéostasie du muscle, est hyperactivée dans les myotubes mutants, révélant un rôle de régulateur négatif de la voie IL6 par Cav3. De plus, cette voie n’est plus régulée négativement quand un stress mécanique est appliqué comme c’est le cas dans les myotubes sauvages (WT). De manière intéressante, les myotubes mutés phénocopient une déplétion de Cav3 et ce phénotype est réversible lorsque l’on reforme des cavéoles à la membrane plasmiques des myotubes mutés en exprimant la forme WT de Cav3. Ceci confirme un lien direct entre les mutations de Cav3 induisant l’absence de cavéoles et le défaut de mécano-protection et mécano-signalisation de la voie IL6. / Caveolae are plasma membrane invaginations that require caveolin proteins for their biogenesis. Recently, our laboratory reported a new role for caveolae in the cell response to mechanical stress (Sinha et al, Cell, 2011). Mutations in the CAV3 gene (muscle isoform), which lead to Cav3 retention in the Golgi apparatus, are associated with muscular dystrophies (MD). My project consists in identifying the functional link between Cav3 mutations and MDs, which exhibit defects in membrane integrity and repair, and in muscle homeostasis.In Cav3-P28L and Cav3-R26Q mutated human myotubes, I showed a lack of caveolae structures at the plasma membrane. This results in a failed buffering of membrane tension increase upon mechanical stress, which leads to membrane integrity defects. I also showed that the interleukin-6 (IL6) pathway, important for muscle homeostasis, is overactivated in mutant myotubes, showing evidence of a negative regulation of the pathway by Cav3. Furthermore, the IL6 pathway is no longer negatively regulated upon mechanical stress, as it is the case in wild-type (WT) myotubes. Interestingly, mutated myotubes phenocopy Cav3 depletion, and the phenotype is reversible with caveolae reformation upon expression of the WT form of Cav3. This confirms the direct link between Cav3 mutations and the absence of caveolae with failed mechano-protection and IL6/STAT3 mechano-signaling.
5

Rôle de l'Annexine-A5 dans la réparation membranaire du muscle strié squelettique et du placenta humains / Role of Annexin-A5 in cell membrane repair in human skeletal muscle and placenta

Carmeille, Romain 27 November 2015 (has links)
La membrane plasmique est un assemblage supramoléculaire qui délimite la cellule. C’est une structure fine, complexe et dynamique assurant des fonctions multiples et vitales pour la cellule. Sa rupture est un évènement physiologique pour les cellules soumises à des stress mécaniques fréquents et/ou importants, comme les cellules épithéliales, les cellules endothéliales ou les cellules musculaires. Dans des conditions physiopathologiques, la membrane plasmique peut également être endommagée par l’insertion de toxines bactériennes formant des pores (PFTs, pour « pore forming toxins »). Le processus de réparation membranaire et la machinerie protéique associée sont encore mal connus. Connaître les partenaires protéiques et comprendre les mécanismes mis en jeu durant le processus de réparation de la membrane plasmique sont deux enjeux fondamentaux majeurs. En effet, il a été établi qu’une défaillance du processus de réparation membranaire pour les fibres musculaires est la cause principale de certaines dystrophies musculaires. La machinerie protéique de réparation comprend des protéines comme la dysferline, la cavéoline-3 et certaines Annexines (Anx). Les Anx appartiennent à une superfamille de protéines répandue chez la plupart des eucaryotes, qui ont la propriété commune de se lier aux membranes biologiques en présence de calcium (Ca2+). Certaines Anx, comme l’AnxA5, une fois liées aux membranes biologiques s’auto-assemblent spontanément en réseau-2D. Lors de ce travail de thèse, nous avons étudié le rôle de l’AnxA5 dans la réparation membranaire des trophoblastes placentaires et des cellules du muscle squelettique humain. Pour les deux types cellulaires, nous avons montré que l’AnxA5 est un acteur indispensable du processus de réparation membranaire dans le cas de ruptures mécaniques. En associant des approches de microscopie de fluorescence et de microscopie électronique à transmission (MET), nous avons mis en évidence que dans ces cellules, le mécanisme de réparation est principalement basé sur la formation d’un « patch » lipidique. Dans les cellules musculaires, les expériences de MET ont mis en évidence qu’un pool d’AnxA5 endogène se lie aux bords du site de rupture quelques secondes après la lésion du sarcolemme. Ceci suggère qu’après rupture de la membrane plasmique, l’augmentation locale de la concentration calcique intracellulaire provoque la liaison de l’AnxA5 spécifiquement aux bords de la région membranaire lésée où elle forme un réseau-2D. Le réseau-2D stabiliserait localement la membrane et préviendrait sa déchirure, induite par les forces de tensions exercées par le cytosquelette cortical. Nous avons également montré que l’AnxA5 ne semble pas impliquée dans la réparation de la membrane plasmique après insertion de PFTs. Ceci suggère que différents mécanismes de réparation existent et que leur mise en place dépend probablement du type ou de l’importance des dommages. Finalement nous avons étendu notre étude à des lignées cellulaires établies à partir de patients diagnostiqués comme souffrant de dystrophies des ceintures de type 2B (déficience en dysferline) et 1C (déficience en cavéoline-3), respectivement. Nous avons montré, pour ces lignées, que la déficience en dysferline ou cavéoline-3 provoque un défaut de réparation dans le cas des ruptures mécaniques de la membrane plasmique. Dans ces cellules musculaires pathologiques intactes ou endommagées, l’AnxA5 a le même comportement, ce qui suggère que l’action de l’AnxA5 est indépendante de ces protéines. A la différence des cellules déficientes en dysferline, nous avons observé que les cellules déficientes en cavéoline-3 sont capables de réparer efficacement des lésions créées par l’insertion de PFTs dans le sarcolemme. Ce résultat supporte l’hypothèse de l’existence de plusieurs mécanismes de réparation. En conclusion, ce travail montre que l’AnxA5 est un composant clé de la machinerie de réparation dans le cas des ruptures mécaniques. / Plasma membrane is the supramolecular assembly that delimits the cell. It is a thin, dynamic and complex structure, ensuring multiple and vital cell functions. Its disruption is a physiological event occurring in cells submitted to frequent mechanical stresses, such as endothelial cells, epithelial cells and muscle cells. It is also a physiological event for cells exposed to pore forming bacterial toxins (PFTs). Membrane repair mechanisms and associated protein machinery are still poorly understood. This knowledge is, however, essential for obvious physiopathological issues. Indeed, a defect of membrane repair in muscle cells leads to some muscular dystrophies. Membrane repair machinery includes proteins such as dysferlin, MG-53, caveolin-3 and some Annexins (Anx). Anx belong to a superfamily of proteins widely spread in most of eukaryotes, which share the property of binding to biological membranes in the presence of calcium (Ca2+). Here, we investigated the role of AnxA5 in cell membrane repair of human trophoblastic and skeletal muscle cells. We showed that AnxA5 is required for membrane repair of mechanical damages in the two cell types. By combining fluorescence and transmission electron microscopy approaches, we evidenced that membrane repair mechanism in these cells is based on the formation of a lipid “patch”. In human muscle cells, TEM experiments revealed that a pool of endogenous AnxA5 binds to the edges of the torn sarcolemma as soon as a few seconds after membrane disruption. Our results suggest the following mechanism: triggered by the local increase in Ca2+ concentration, AnxA5 molecules bind to PS exposed at the edges of the torn membrane, where they self-assemble into 2D arrays. The formation of 2D arrays strengthens the damaged sarcolemma, counteracts the tensions exerted by the cortical cytoskeleton and thus prevents the expansion of the tear. We showed also that a pool of endogenous AnxA5 binds to intracellular vesicles that obstruct the wounding site. It is likely these vesicles, once associated one to each other, ensure membrane resealing. Our results suggest that sarcolemma repair of damages caused by PFTs is independent of AnxA5. Therefore, different membrane repair mechanisms may exist, their occurrence probably depending on the type and/or the size of damages. Finally, we performed studies on muscle cells established from patients diagnosed with limb girdle muscular dystrophies type 2B (dysferlin-deficient) and 1C (caveolin-3-deficient), respectively. We found that dysferlin or caveolin-3 deficiency leads to a defect of membrane repair, in the case of mechanical damages. AnxA5 behaved similarly in these damaged cells and wild-type cells, suggesting that its function is independent of dysferlin or caveolin-3. Unlike dysferlin-deficient cells, damages created by PFTs are efficiently repaired in caveolin- 3-deficient cells. This result supports the hypothesis that different mechanisms occur in muscle cells, depending on the type of damage. In conclusion, this work indicates that AnxA5 is a key component of the membrane repair machinery, in the case of mechanical disruptions. Our results enable to propose a detailed mode of action for AnxA5.
6

ÉTUDE DU RÔLE DU SÉLÉNIUM ET DE LA SÉLÉNOPROTÉINE N<br />DANS LES PATHOLOGIES MUSCULAIRES.

Rederstorff, M. 15 September 2006 (has links) (PDF)
Longtemps considéré comme un composé toxique, le sélénium est maintenant<br />largement reconnu comme oligo-élément essentiel. Des carences alimentaires ont été<br />associées à de nombreuses pathologies.<br />La sélénocystéine est la forme biologique principale du sélénium. Cet acide aminé particulier<br />est spécifiquement incorporé dans les sélénoprotéines grâce à une machinerie traductionnelle<br />dédiée en réponse à un codon UGA, traditionnellement reconnu comme un codon stop.<br />A ce jour, la fonction moléculaire de la plupart des sélénoprotéines demeure inconnue. Parmi<br />celles-ci figure la sélénoprotéine N (SePN), une nouvelle protéine à sélénium identifiée en<br />1999 dans notre laboratoire par une approche bioinformatique.<br />En 2001, il a été démontré que des mutations dans le gène SEPN1 codant pour SePN étaient<br />responsables de différentes pathologies musculaires regroupées dorénavant sous le terme de<br />myopathies apparentées à la sélénoprotéine N.<br />Au début de ma thèse, peu de choses étaient connues sur la fonction de SePN. Pour<br />comprendre son rôle, nous avons entrepris son étude selon différentes approches.<br />Dans un premier temps, j'ai contribué à montrer que SePN est une glycoprotéine de 65kDa,<br />associée aux membranes du réticulum endoplasmique. Ensuite, des approches biochimiques<br />successives ont permis de mettre en évidence son interaction avec différentes protéines de la<br />membrane, et dont l'identification est en cours.<br />Dans un deuxième temps, nous avons mis au point deux modèles animaux des pathologies<br />musculaires associées à un dysfonctionnement de SePN. Par une approche antisens, il a été<br />observé que l'inhibition de l'expression de SePN au cours du développement embryonnaire<br />chez le poisson zèbre entraînait une altération de l'organisation du tissu musculaire.<br />Parallèlement, tirant avantage du système Cre-Lox, nous avons obtenu des souris invalidées<br />pour SEPN1 dans tout l'organisme ou de façon tissu spécifique dans le muscle. De façon<br />surprenante, les animaux ainsi obtenus ne présentent pas de phénotype apparent, même si les<br />analyses histologiques préliminaires permettent d'observer un profil dystrophique classique<br />des fibres musculaires. En outre, les animaux semblent présenter une sensibilité accrue au<br />stress oxydatif induit. L'exploration fonctionnelle de ce modèle est poursuivie au laboratoire<br />et fait l'objet de plusieurs collaborations.<br />Enfin, une autre étude entreprise au cours de ma thèse concerne une mutation pathologique du<br />gène SEPN1 conduisant à l'apparition de myopathies chez l'homme. Par une approche<br />originale déduite du mécanisme atypique de traduction des sélénoprotéines, une stratégie qui<br />pourrait aboutir à terme à une thérapie génique pour certains patients a été mise au point.<br />L'ensemble de ces travaux va permettre d'augmenter nos connaissances sur le rôle de<br />la sélénoprotéine N dans le muscle ainsi que sur la fonction biologique de l'oligo-élément<br />sélénium dans ce tissu. Le but ultime de l'ensemble de ces travaux est de développer des<br />outils de diagnostic ainsi que des approches thérapeutiques ciblées.
7

Characterization of the sarcolemma in limb-girdle muscular dystrophy / Caractérisation du sarcolemme dans les dystrophies musculaires des ceintures

Kunz, Severine 22 October 2014 (has links)
Les dystrophies musculaires des ceintures (LGMD) sont un groupe hétérogène de dystrophies musculaires à progression lente. Des mutations du gène de la dysferline causent la LGMD de type 2B, mutations dans le gène de la cavéoline-3 (cav-3) causent LGMD de type 1C et des mutations dans le gène anoctamine-5 (ano-5) sont liées aux LGMD. Dans le but d'analyser les mécanismes moléculaires des LGMD et d'étudier les potentielles interactions de la dysferline, de la cav-3 et de l'ano5, des expériences sur des cellules musculaires primaires portant des mutations associées aux gènes DYSF, CAV3 et ANO5 ont été analysées. Les études d'immunomarquage ont montré que la protéine dysferline et la cav-3 sont partiellement colocalisées dans des structures vésiculaires de la membrane plasmique des myotubes primaires humains. La purification biochimique des "detergent-resistant membranes" issus des myotubes différenciés a montré que la dysferline est associée aux " lipid raft " liées aux cytosquelettes d'actine. L'analyse de la microscopie électronique sur les myotubes issus des muscles des patients atteints de LGMD a montré des altérations dans l'abondance des cavéoles à la membrane plasmique qui est en corrélation avec les mutations causant la maladie. L'analyse de l'ultrastructure cellulaire a montré que la dysferline est localisée à la membrane plasmique mais également dans des vésicules cytosoliques. L'immunopurification de ces vésicules contenant de la dysferline a révélé la présence d'environ 500 protéines détectées par LC-MS, ce qui pourrait représenter des protéines structurales vésiculaires, ainsi que des nouveaux partenaires potentiels d'interaction de la dysferline. / Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of slowly progressive muscular dystrophies with common features such as hyperCKemia and skeletal muscle weakness. Mutations in the dysferlin gene cause LGMD 2B, in the caveolin-3 (cav-3) gene LGMD 1C and in the anoctamin-5 (ano-5) gene LGMD 2L, respectively. In order to reveal the molecular mechanisms underlying LGMD and to investigate the putative interactions of dysferlin, cav-3, and ano5, primary skeletal muscle cell lines with disease-related mutations in DYSF, CAV3, and ANO5 have been analyzed. Immunolabeling studies revealed that dysferlin and cav-3 are partially colocalized in vesicular structures at the plasma membrane. Biochemical purification of detergent-resistant membranes from differentiated myotubes showed that dysferlin is associated with lipid rafts linked to the actin-cytoskeleton. Transmission electron microscopy analysis of myotubes revealed alterations of caveolae abundance at the plasma membrane correlating with disease-causing mutations. Ultrastructural studies revealed localization of dysferlin at the plasma membrane, but also in cytosolic vesicles. These vesicles contained a subset of approximately 500 proteins detected by LC-MS, which might represent vesicular structural proteins, vesicle cargo, and putative new dysferlin interaction partners. Results from this study lead to the conclusion that caveolae play a crucial role in the context of LGMD. Dysferlin and cav-3 seem to be closely linked on structural as well as on functional level. Our results confirm that dysferlin is localized in cytosolic vesicles, which are involved in multiple cellular processes.

Page generated in 0.0834 seconds