• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 697
  • 345
  • 199
  • 124
  • 67
  • 36
  • 23
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 1864
  • 220
  • 213
  • 205
  • 154
  • 143
  • 136
  • 136
  • 135
  • 129
  • 128
  • 127
  • 118
  • 109
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Kinematic Simulation for Turbulent Particle-Laden Flows

Murray, Stephen 17 June 2016 (has links)
Kinematic simulation (KS) is a means of generating a turbulent-like velocity field, in a manner that enforces an input Eulerian energy spectrum. Such models have also been applied in particle-laden flows, due to their ability to enforce spatial organization of the fluid velocity field when simulating the trajectories of individual particles. A critical evaluation of KS is presented; in particular, its ability to reproduce single-particle Lagrangian statistics is examined. Also the ability of KS to reproduce the preferential concentration of inertial particles is explored. Some numerical results are presented, in which fluid tracers and inertial particles are transported alternatively by (1) simulated turbulence generated by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations, and (2) KS. The effect of unsteadiness formulation in particular is examined. It is found that even steady KS qualitatively reproduces the continuity effect, clustering of inertial particles, elevated dispersion of inertial particles and the intermittent turbulence velocity signal. A novel method is then motivated and formulated, in which, for input RANS parameters, a simulated spectrum is used to generate a KS field which enforces a target Lagrangian timescale. This method is then tested against an existing experimental benchmark, and good agreement is obtained. / Thesis / Doctor of Philosophy (PhD) / Turbulence arises in an immense variety of industrial and scientific applications; from weather to automotive design; from medicine to nuclear engineering. Because turbulence is chaotic, it is difficult to make accurate predictions of how a turbulent flow will behave in a given scenario. The objective of my research is to find easier ways of accurately modelling turbulence in a certain class of particle-laden flows.
212

Size-Dependant Separation of Multiple Particles in Spiral Microchannels

Chatterjee, Arpita 04 August 2011 (has links)
No description available.
213

NUMERICAL INVESTIGATION OF LAMINAR FORCED CONVECTION IN TWO-DIMENSIONAL AND THREE-DIMENSIONAL SINUSOIDAL CORRUGATED DUCTS

KUNDU, JAYDEEP 11 October 2001 (has links)
No description available.
214

Optimization Capabilities for Axial Compressor Blades and Seal Teeth Cavity

Mahmood, Syed Moez Hussain 28 June 2016 (has links)
No description available.
215

Simulations Of Two Dimensional Gravity-Driven And Shear-Driven Rapid Granular Flows

Vutukuri, Hanumantha Rao 09 1900 (has links) (PDF)
No description available.
216

Origin of Instability and Plausible Turbulence in Astrophysical Accretion Disks and Rayleigh-stable Flows

Nath, Sujit Kumar January 2016 (has links) (PDF)
Accretion disks are ubiquitous in astrophysics. They are found in active galactic nuclei, around newly formed stars, around compact stellar objects, like black holes, neutron stars etc. When the ambient matter with sufficient initial angular momentum falls towards a central massive object, forming a disk shaped astrophysical structure, it is called an accretion disk. There are both ionized and neutral disks depending on their temperatures. Generally, in accretion disks, Gravitational force is balanced by the centrifugal force (due to the presence of angular momentum of the matter) and the forces due to gas pressure, radiation pressure and advection. Now, the matter to be accreted needs to lose angular momentum. For most of the accretion disks, the mass of the central object is much higher than the mass of the disk, giving rise to a dynamics governed by a central force. Therefore we can neglect the effect of self-gravity of the disk. Balancing the Newtonian gravitational force and centrifugal force leads to a Keplerian rotation profile of the accreting matter with the angular velocity ∼ r−3/2, where r is the distance from the central object. The Keplerian disk model is extremely useful to explain several flow classes (e.g. emission of soft X-ray in disks around stellar mass black holes). Due to the presence of differential rotation and hence shear viscosity, the matter can slowly lose its angular momentum and falls towards the central object. In this way, the accreting matter in the disk releases its gravitational potential energy and gives rise to luminosity that we observe. However, the molecular viscosity originated from the microscopic physics (due to the collisions between molecules) of the disk matter is not sufficient to explain the observed luminosity or accretion rate. For example, it can be shown that the temperature arisen from the dissipation of energy due to molecular viscosity (which is around 50000K for optical depth τ = 100) is much less than the temperature observed in these systems (around 107K). In my thesis, I have addressed the famous problem of infall of matter in astrophysical accretion disks. In general, the emphasis is given on the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, which are extensively seen in astrophysics, are Rayleigh-stable, but must be turbulent in order to explain observed data (observed temperature, as described above). Since the molecular viscosity is negligible in these systems, for a very large astrophysical length scale, Shakura and Sunyaev argued for turbulent viscosity for energy dissipation and hence to explain the infall of matter towards the central object. This idea is particularly attractive because of its high Reynolds number (Re ∼ 1014). However, the Keplerian disks, which are relevant to many astrophysical applications, are remarkably Rayleigh stable. Therefore, linear perturbation apparently cannot induce the onset of turbulence, and consequently cannot provide enough viscosity to transport matter inwards. The primary theme of my thesis is, how these accretion disks can be made turbulent in the first place to give rise to turbulent viscosity. With the application of Magnetorotational Instability (MRI) to Keplerian disks, Balbus and Hawley showed that initial seed, weak magnetic fields can lead to the velocity and magnetic field perturbations growing exponentially. Within a few rotation times, such exponential growth could reveal the onset of turbulence. Since then, MRI has been a widely accepted mechanism to explain origin of instability and hence transport of matter in accretion disks. Note that for flows having strong magnetic fields, where the magnetic field is tightly coupled with the flow, MRI is not expected to work. Hence, it is very clear that the MRI is bounded in a small regime of parameter values when the field is also weak. It has been well established by several works that transient growth (TG) can reveal nonlinearity and transition to turbulence at a sub-critical Re. Such a sub-critical transition to turbulence was invoked to explain colder, purely hydrodynamic accretion flows, e.g. quiescent cataclysmic variables, proto-planetary and star-forming disks, the outer region of the disks in active galactic nuclei etc. Baroclinic instability is another plausible source for vigorous turbulence in colder accretion disks. Note that while hotter flows are expected to be ionized enough to produce weak magnetic fields therein and subsequent MRI, colder flows may remain to be practically neutral in charge and hence any instability and turbulence therein must be hydrodynamic. However, in the absence of magnetic effects, the Coriolis force does not allow any significant TG in accretion disks in three dimensions, independent of Re, while in pure two dimensions, TG could be large at large Re. However, a pure two-dimensional flow is a very idealistic case. Nevertheless, in the presence of magnetic field, even in three dimensions, TG could be very large (Coriolis effects could not suppress the growth). Hence, in a real three-dimensional flow, it is very important to explore magnetic TG. However, as mentioned above, the charge neutral Rayleigh-stable astrophysical flows have hardly any magnetic field (e.g. protoplanetary disks, quiescent cataclysmic variables etc.). Also, the hydrodynamic Rayleigh-stable Taylor-Couette flows and plane Couette flows in the laboratory experiments are seen to be turbulent without the presence of any magnetic field, while they are shown to be stable in linear stability analysis. It is a century old unsolved problem to explain hydrodynamically, the linear instability of Couette flows and other Rayleigh-stable Flows, which are observed to be turbulent, starting from laboratory experiments to astrophysical observations. Therefore, as in one hand, the hydrodynamic instability of the astrophysical accretion flows and laboratory shear flows (e.g. Rayleighstable Taylor-Couette flow, plane Couette flow etc.) has to be understood, on the other hand, the magnetohydrodynamic (MHD) instability of the hotter flows has also to be investigated to understand the nature of MHD instability clearly, whether it arises due to MRI or TG. I have investigated the effect of stochastic noise (which is generated by the shearing motion of the disk layers) on the hydrodynamics and magnetohydrodynamics of accretion disks and explain how stochastic noise can make accretion Disks turbulent. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbations, and hence large energy dissipations of perturbation with time, which presumably generates instability and turbulence. I have also given in my thesis, a plausible resolution of the hydrodynamic turbulence problem of the accretion flows and laboratory shear flows (as discussed above) from pure hydrodynamics, invoking the idea of Brownian motion of particles. I have shown that in any shear flow, very likely, the stochastic noise is generated due to thermal fluctuations. Therefore, the shear flows must be studied including the effect of stochastically driving force and hence the governing equations should not be deterministic. Incorporating the effects of noise in the study of the above mentioned shear flows, I have shown in my thesis that hydrodynamic Rayleigh-stable flows and plane Couette flows can be linearly unstable. I have also investigated the importance of transient growth over magnetorotational instability (MRI) to produce turbulence in accretion disks. Balbus and Hawley asserted that the MRI is the fastest weak field instability in accretion disks. However, they used only the plane wave perturbations to study the instability problem. I have shown that for the flows with high Reynolds number, which are indeed the case for astrophysical accretion disks, transient growth can make the system nonlinear much faster than MRI and can be a plausible primary source of turbulence, using the shearing mode perturbations. Therefore, this thesis provides a plausible resolution of hydrodynamic turbulence observed in astrophysical accretion disks and some laboratory shear flows, such as, Rayleigh-stable Taylor-Couette flows and plane Couette flows. Moreover, this thesis also provides a clear understanding of MHD turbulence for astrophysical accretion disks.
217

Analysis Of Dense Sheared Granular Flows

Reddy, Katha Anki 03 1900 (has links)
A granular material is a collection of discrete, solid particles of macroscopic size dispersed in an interstitial fluid, in which the fluid has an insignificant effect on the particle dynamics. Because they exhibit fascinating properties because of dissipative interactions, due to their importance in geophysical and industrial processes, flows of granular materials have been the focus of large amount of research involving physicists and engineers. A good understanding of the physics of granular materials is desired in order to design efficient processing and handling systems. Granular materials can be heaped like a solid, and can flow like a fluid. Though the two distinct regimes of granular flows are well described by kinetic theory (rapid flows) and plasticity theories (quasi-static), the intermediate dense flow regime, where collisional and frictional interactions are important, is not yet described successfully. In this thesis, we examine the applicability of kinetic theory for dense granular flows, the structure and dynamics in sheared inelastic hard disks systems and dynamics of sheared non-spherical particles. Two complementary simulation techniques, the discrete element (DE) technique for soft particles and the event driven (ED) simulation technique for hard particles, are used to examine the extent to which the dynamics of an unconfined dense granular flow can be well described by a hard particle model when the particle stiffness becomes large. First, we examine the average co-ordination number for the particles in the flow down an inclined plane using the DE technique using both linear and Hertzian contact models. The simulations show that the average co-ordination number decreases below 1 for values of the spring stiffness corresponding to real materials such as sand and glass, even when the angle of inclination is only 1olarger than the angle of repose. The results of the two simulation techniques for the Bagnold coefficients (ratio of stress and square of the strain rate) and the granular temperature (mean square of the fluctuating velocity) are found to be in quantitative agreement. In addition, we also conduct the comparison of the pre-collisional relative velocities of particles in contact. Since momentum is transported primarily by particle contacts in a dense flow, the relative velocity distribution is a sensitive comparison of the dynamics in the two simulation techniques. It is found that the relative velocity distribution in both simulation techniques are well approximated by an exponential distribution for small coefficients of restitution, indicating that the dynamics of a dense granular flow can be adequately described by a hard particle model. The structure and dynamics of the two-dimensional linear shear flow of inelastic disks at high area fractions are analysed. The event-driven simulation technique is used in the hard-particle limit, where the particles interact through instantaneous collisions. The structure (relative arrangement of particles) is analysed using the bond-orientational order parameter. It is found that the shear flow reduces the order in the system, and the order parameter in a shear flow is lower than that in a collection of elastic hard disks at equilibrium. The distribution of relative velocities between colliding particles is analysed. The relative velocity distribution undergoes a transition from a Gaussian distribution for nearly elastic particles, to an exponential distribution at low coefficients of restitution. However, the single-particle distribution function is close to a Gaussian in the dense limit, indicating that correlations between colliding particles have a strong influence on the relative velocity distribution. This results in a much lower dissipation rate than that predicted using the molecular chaos assumption, where the velocities of colliding particles are considered to be uncorrelated. The orientational ordering and dynamical properties of the shear flow of inelastic dumbbells in two dimensions are studied, as a first step towards examining the effect of shape on the properties of flowing granular materials. The dumbbells are smooth fused disks characterised by the ratio of the distance between centers (L) and the disk diameter (D), and the ratio (L/D)varies between 0 and 1 in our simulations. Area fractions studied are in the range 0.1 to 0.7, while coefficients of normal restitution from 0.99 to 0.6 are considered. The simulations are similar to the event driven simulations for circular disks, but the procedure for predicting collisions is much more complicated due to the non-circular shape of the particles and due to particle rotation. The average orientation is measured using an orientational order parameter S, which varies between 0 (for a perfectly disordered fluid) and 1 (for a fluid with the axis of all dumbbells in the same direction). It is found that there is a gradual increase in ordering as the area fraction is increased, as the aspect ratio is increased or as the coefficient of restitution is decreased, and the order parameter has a maximum value of about 0.5 for the highest area fraction and lowest coefficient of restitution considered here. However, there is no discontinuous nematic transition for all the parameters studied here. The axis of the dumbbells are preferentially oriented along the extensional axis (at an angle of 45ofrom the flow direction) at low area fraction, but the orientation is closer to the flow direction as the area fraction is increased. The orientation distribution is calculated, and it is found that the orientation distribution is well described by a function of the form P(θ) =(1/π)+ (2S/π)cos(2(θ−θp)), where θis the angle from the flow direction and θpis the principal orientation direction. The mean energy of the velocity fluctuations in the flow direction is found to be higher than that in the gradient direction and the rotational energy, though the difference decreases as the area fraction increases, due to the efficient collisional transfer of energy between the three directions. The distributions of the translational and rotational velocity are found to be Gaussian distributions to a very good approximation. The equation of state for the pressure is calculated, and it is found to be remarkably independent of the coefficient of restitution. The pressure and dissipation rate show relatively little variation when scaled by the collision frequency for all the area fractions studied here, indicating that the collision frequency determines the momentum transport and energy dissipation even at the lowest area fractions studied here. The mean angular velocity of the particles is examined in some detail. It is found that the mean angular velocity is equal to half the vorticity at low area fractions, but the magnitude of the mean angular velocity systematically decreases to less than half the vorticity as the area fraction is increased, even though the stress tensor is symmetric.
218

Simulations of pulsatile flow through bileaflet mechanical heart valves using a suspension flow model: to assess blood damage

Yun, Brian Min 08 June 2015 (has links)
Defective or diseased native valves have been replaced by bileaflet mechanical heart valves (BMHVs) for many years. However, severe complications still exist, and thus blood damage that occurs in BMHV flows must be well understood. The aim of this research is to numerically study platelet damage that occurs in BMHV flows. The numerical suspension flow method combines lattice-Boltzmann fluid modeling with the external boundary force method. This method is validated as a general suspension flow solver, and then validated against experimental BMHV flow data. Blood damage is evaluated for a physiologic adult case of BMHV flow and then for BMHVs with pediatric sizing and flow conditions. Simulations reveal intricate, small-scale BMHV flow features, and the presence of turbulence in BMHV flow. The results suggest a shift from previous evaluations of instantaneous flow to the determination of long-term flow recirculation regions when assessing thromboembolic potential. Sharp geometries that may induce these recirculation regions should be avoided in device design. Simulations for predictive assessment of pediatric sized valves show increased platelet damage values for potential pediatric valves. However, damage values do not exceed platelet activation thresholds, and highly damaged platelets are found far from the valve. Thus, the increased damage associated with resized valves is not such that pediatric valve development should be hindered. This method can also be used as a generic tool for future evaluation of novel prosthetic devices or cardiovascular flow problems.
219

A new two-scale model for large eddy simulation of wall-bounded flows

Gungor, Ayse Gul 14 May 2009 (has links)
A new hybrid approach to model high Reynolds number wall-bounded turbulent flows is developed based on coupling the two-level simulation (TLS) approach in the inner region with conventional large eddy simulation (LES) away from the wall. This new approach is significantly different from previous near-wall approaches for LES. In this hybrid TLS-LES approach, a very fine small-scale (SS) mesh is embedded inside the coarse LES mesh in the near-wall region. The SS equations capture fine-scale temporal and spatial variations in all three cartesian directions for all three velocity components near the wall. The TLS-LES equations are derived based on defining a new scale separation operator. The TLS-LES equations in the transition region are obtained by blending the TLS large-scale and LES equations. A new incompressible parallel flow solver is developed that accurately and reliably predicts turbulent flows using TLS-LES. The solver uses a primitive variable formulation based on an artificial compressibility approach and a dual time stepping method. The advective terms are discretized using fourth-order energy conservative finite differences. The SS equations are also integrated in parallel, which reduces the overall cost of the TLS-LES approach. The TLS-LES approach is validated and investigated for canonical channel flows, channel flow with adverse pressure gradient and asymmetric plane diffuser flow. The results suggest that the TLS-LES approach yields very reasonable predictions of most of the crucial flow features in spite of using relatively coarse grids.
220

Modeling Free Surface Flows and Fluid Structure Interactions using Smoothed Particle Hydrodynamics

Nair, Prapanch January 2015 (has links) (PDF)
Recent technological advances are based on effectively using complex multiphysics concepts. Therefore, there is an ever increasing need for accurate numerical al-gorithms of reduced complexity for solving multiphysics problems. Traditional mesh-based simulation methods depend on a neighbor connectivity information for formulation of operators like derivatives. In large deformation problems, de-pendence on a mesh could prove a limitation in terms of accuracy and cost of preprocessing. Meshless methods obviate the need to construct meshes thus al-lowing simulations involving severe geometric deformations such as breakup of a contiguous domain into multiple fragments. Smoothed Particle Hydrodynamics (SPH) is a meshless particle based Lagrangian numerical method that has the longest continuous history of development ever since it was introduced in 1977. Commensurate with the significant growth in computational power, SPH has been increasingly applied to solve problems of greater complexity in fluid mechanics, solid mechanics, interfacial flows and astrophysics to name a few. The SPH approximation of the continuity and momentum equations govern-ing fluid flow traditionally involves a stiff equation of state relating pressure and density, when applied to incompressible flow problems. Incompressible Smoothed Particle Hydrodynamics (ISPH) is a variant of SPH that replaces this weak com-pressibility approach with a pressure equation that gives a hydrostatic pressure field which ensures a divergence-free (or density invariant) velocity field. The present study explains the development of an ISPH algorithm and its implementa-tion with focus on application to free surface flows, interaction of fluid with rigid bodies and coupling of incompressible fluids with a compressible second phase. Several improvements to the exiting ISPH algorithm are proposed in this study. A semi-analytic free surface model which is more accurate and robust compared to existing algorithms used in ISPH methods is introduced, validated against experi-ments and grid based CFD results. A surface tension model with specific applica-bility to free surfaces is presented and tested using 2D and 3D simulations. Using theoretical arguments, a volume conservation error in existing particle methods in general is demonstrated. A deformation gradient based approach is used to derive a new pressure equation which reduces these errors. The method is ap-plied to both free surface and internal flow problems and is shown to have better volume conservation and therefore reduced density fluctuations. Also, comments on instabilities arising from particle distributions are made and the role of the smoothing functions in such instabilities is discussed. The challenges in imple-menting the ISPH algorithm in a computer code are discussed and the experience of developing an in-house ISPH code is described. A parametric study on water entry of cylinders of different shapes, angular velocity and density is performed and aspects such as surface profiles, impact pressures and penetration velocities are compared. An analysis on the energy transfer between the solid and the fluid is also performed. Low Froude number water entry of a sphere is studied and the impact pressure is compared with the theoretical estimates. The Incompressible SPH formulation, employing the proposed improvements from the study is then coupled with a compressible SPH formulation to perform two phase flow simulations interacting compressible and incompressible fluids. To gain confidence in its applicability, the simulations are compared against the theoretical predication given by the Rayleigh-Plesset equation for the problem of compressible drop in an incompressible fluid.

Page generated in 0.1114 seconds