• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development of children's perception of hierarchical patterns : an investigation across tasks and populations / Le développement chez l'enfant de la perception de pattern hierarchique : une investigation au travers de différentes tâches et populations

Puspitawati, Ira 07 October 2011 (has links)
Pas de résumé / The thesis investigated the development of children’s global/local processing hierarchical patterns introduced by Navon (1977). The objectives were to understand more comprehensively the developmental characteristics of children’s perception through their global and local processing of hierarchical patterns, by considering the effects of age, stimuli properties, duration of exposure to the stimuli and gender in a perceptual task and a drawing task. These effects were tested in 3 different populations: typically developing children, children with mental retardation and early blind children. The results revealed that typically developing children attended to both the local and global level of processing but these modes of spatial information processing operated independently. In a first step, children before 4 years of age showed dominance of local processing and then a more global processing developed at 4 years of age, and at 5 years of age integrated responses began to emerge. Early blind children showed similar developmental characteristics, although there was a protracted period of local processing dominance. Indeed, these children mainly produced local responses at ages of between 6 and 10 years, and then developed more global responses at 11-12 years and continued to integrate the two levels of analysis at later ages. On the other hand, global dominance was shown in children with mental retardation and their development was affected more by mental age than by chronological age. Moreover, their responses were shown to be sensitive to the fact that meaningful object could be located at the local level, enhancing local processing in this case. These results need further confirmations as the studies of global/local processing in atypical children are not numerous. In particular, the effect of duration of exposure to the stimuli should be further analyzed, because this factor did not seem to have a great effect in our experiments while it seemed more powerful in other studies carried out with adults. Replication of the study with children with mental retardation appears also important to plan for future work, because we can have some doubt relatively the absence of modification through ages of the way these children perceive hierarchical patterns. Finally, defining more precisely what may underlie the gender differences seems also worth to explore since gender did not show a major effect in our results.
2

Navigation spatiale avec des systèmes de substitution sensorielle tactiles dans la cécité précoce et tardive

Djerourou, Ismaël 08 1900 (has links)
La perte de la vision affecte considérablement la capacité de se déplacer dans l’environnement. Les personnes aveugles utilisent aujourd’hui des aides à la mobilité comme la canne blanche et le chien guide. Cependant, ces aides ne donnent pas assez d’information sur l’environnement, et des accidents peuvent parfois survenir, notamment avec des obstacles en hauteur, non détectés par la canne blanche. Les systèmes de substitution sensorielle permettent d’apporter l’information visuelle via une autre modalité intacte comme le toucher. Il en existe principalement deux types, des systèmes de guidages, comme le EyeCane qui donne une information de distance en un point, et des systèmes visuels comme le Tongue Display Unit, basé sur le contraste qui transforme le signal d’une caméra en stimulation électro-tactile sur la langue. Le but de l’étude était de comparer ces deux appareils dans un même couloir à obstacle à taille réelle (21m x 2,4m). Des aveugles précoces et tardifs, et des contrôles voyants aux yeux bandés devaient traverser le couloir tout en détectant, identifiant et évitant les obstacles (cube, porte, sol, poteau) rencontrés. Les résultats ont montré que tous les participants ont été capables de naviguer avec les deux appareils. De plus, avec le EyeCane, les participants aveugles ont significativement mieux évité les obstacles après détection que les voyants, et que les aveugles précoces étaient significativement plus rapides pour traverser le couloir que les deux autres groupes. Cependant, la comparaison entre les deux appareils a révélé que les aveugles tardifs ont détecté significativement plus d’obstacles avec le TDU qu’avec le EyeCane sans pour autant améliorer les performances de navigation. De plus, la quantité d’information sur l’environnement fournie par le TDU semble ralentir et fatiguer les participants après une longue période d’utilisation. On peut alors suggérer que seules les informations de l’environnement immédiat données par le EyeCane sont nécessaires et suffisantes à la navigation. Cette étude permet de mieux guider la conception de futurs appareils destinés à améliorer l’indépendance de navigation chez les personnes aveugles. / Vision loss affects the ability to move around the environment. People who are blind today use mobility aids such as the long cane and guide dog. However, these aids do not provide enough information about the environment, and accidents can sometimes occur, especially with high obstacles not detected by the white cane. Sensory substitution systems allow visual information to be provided via another intact modality such as touch. There are mainly two types: guidance systems, like the EyeCane, that give distance information at a point, and visual systems, like the Tongue Display Unit, based on contrast which transforms the signal from a camera into electrotactile stimulation on the tongue. The aim of the study was to compare these two devices in the same full-size obstacle course (21m x 2.4m). Early and late blind, and blindfolded sighted controls had to cross the hallway while detecting, identifying and avoiding encountered obstacles (cube, door, floor, pole). It was found that all participants were able to navigate with both devices. Furthermore, with the EyeCane, the blind participants were significantly better to avoid obstacles after detection than the sighted, and the early blind were significantly faster to cross the corridor than the other two groups. However, the comparison between the two devices revealed that participants detected significantly more obstacles with the TDU than with the EyeCane without improving navigation performance. In addition, the amount of environmental information provided by the TDU appears to slow down and tire participants after a long period of use. We can then suggest that only the information of the immediate environment given by the EyeCane is necessary and sufficient for navigation. This study helps to guide the design of future devices to improve navigation independence in blind people.
3

Un oeil sur la langue : aspects neuro-cognitifs du processus de la navigation chez l'aveugle-né

Chebat, Daniel-Robert 03 1900 (has links)
La vision est un élément très important pour la navigation en général. Grâce à des mécanismes compensatoires les aveugles de naissance ne sont pas handicapés dans leurs compétences spatio-cognitives, ni dans la formation de nouvelles cartes spatiales. Malgré l’essor des études sur la plasticité du cerveau et la navigation chez les aveugles, les substrats neuronaux compensatoires pour la préservation de cette fonction demeurent incompris. Nous avons démontré récemment (article 1) en utilisant une technique d’analyse volumétrique (Voxel-Based Morphometry) que les aveugles de naissance (AN) montrent une diminution de la partie postérieure de l’hippocampe droit, structure cérébrale importante dans la formation de cartes spatiales. Comment les AN forment-ils des cartes cognitives de leur environnement avec un hippocampe postérieur droit qui est significativement réduit ? Pour répondre à cette question nous avons choisi d’exploiter un appareil de substitution sensorielle qui pourrait potentiellement servir à la navigation chez les AN. Cet appareil d’affichage lingual (Tongue display unit -TDU-) retransmet l’information graphique issue d’une caméra sur la langue. Avant de demander à nos sujets de naviguer à l’aide du TDU, il était nécessaire de nous assurer qu’ils pouvaient « voir » des objets dans l’environnement grâce au TDU. Nous avons donc tout d’abord évalué l’acuité « visuo »-tactile (article 2) des sujets AN pour les comparer aux performances des voyants ayant les yeux bandées et munis du TDU. Ensuite les sujets ont appris à négocier un chemin à travers un parcours parsemé d’obstacles i (article 3). Leur tâche consistait à pointer vers (détection), et contourner (négociation) un passage autour des obstacles. Nous avons démontré que les sujets aveugles de naissance non seulement arrivaient à accomplir cette tâche, mais encore avaient une performance meilleure que celle des voyants aux yeux bandés, et ce, malgré l’atrophie structurelle de l’hippocampe postérieur droit, et un système visuel atrophié (Ptito et al., 2008). Pour déterminer quels sont les corrélats neuronaux de la navigation, nous avons créé des routes virtuelles envoyées sur la langue par le biais du TDU que les sujets devaient reconnaitre alors qu’ils étaient dans un scanneur IRMf (article 4). Nous démontrons grâce à ces techniques que les aveugles utilisent un autre réseau cortical impliqué dans la mémoire topographique que les voyants quand ils suivent des routes virtuelles sur la langue. Nous avons mis l’emphase sur des réseaux neuronaux connectant les cortex pariétaux et frontaux au lobe occipital puisque ces réseaux sont renforcés chez les aveugles de naissance. Ces résultats démontrent aussi que la langue peut être utilisée comme une porte d’entrée vers le cerveau en y acheminant des informations sur l’environnement visuel du sujet, lui permettant ainsi d’élaborer des stratégies d’évitement d’obstacles et de se mouvoir adéquatement. / Vision is a very important tool for navigation in general. Due to compensatory mechanisms people who are blind from birth are not handicapped in spatio-cognitive abilities, nor in the formation of novel spatial maps. Despite the growing volume of studies on brain plasticity and navigation in the blind, the compensatory neural substrates or the preservation of this function remain unclear. We have recently demonstrated (article 1) by using volumetric analysis techniques (Voxel-Based Morphometry) that early blind individuals (EB) show a reduction of the posterior end of the hippocampus on the right side. This cerebral structure is important for the formation of cognitive maps. How do EB form maps of their environment with a significantly reduced posterior right hippocampus? To answer this question we chose to exploit a sensory substitution device that could potentially serve navigation in EB. This tongue display unit (TDU) is capable of transmitting pictorial imagery in the form of electricity on the tongue. Before asking our participants to navigate using the TDU, it was necessary to ascertain that they could really « see » objects in the environment using the TDU. We thus evaluated the « visuo »-tactile acuity (article 2) of EB compared to sighted blindfolded participants using the TDU. Participants later learned to negotiate a path through an obstacle course (article 3). Their task consisted of pointing to (detection), and avoiding (negotiation) obstacles while advancing through the hallway. We demonstrated that despite a reduced right posterior hippocampus, and an iii atrophied visual system (Ptito et al., 2008) EB not only were able to accomplish this task, but had a better performance than the blindfolded sighted controls. To determine what the neural correlates of navigation in EB are, we devised an fMRI compatible virtual route task conveyed through the tongue (article 4). Participants had to learn to navigate the routes and recognize them. We showed that EB use another cortical network involved in cognitive mapping than the sighted when recognizing routes on the tongue. We have emphasized neural networks connecting parietal and frontal cortices since they are re-enforced in EB. These results show that the tongue can be used as a portal to the brain by transferring pictorial information from the visual environment of participants, allowing the elaboration of strategies to avoid obstacles and move around in their environment.
4

Un oeil sur la langue : aspects neuro-cognitifs du processus de la navigation chez l'aveugle-né

Chebat, Daniel-Robert 03 1900 (has links)
La vision est un élément très important pour la navigation en général. Grâce à des mécanismes compensatoires les aveugles de naissance ne sont pas handicapés dans leurs compétences spatio-cognitives, ni dans la formation de nouvelles cartes spatiales. Malgré l’essor des études sur la plasticité du cerveau et la navigation chez les aveugles, les substrats neuronaux compensatoires pour la préservation de cette fonction demeurent incompris. Nous avons démontré récemment (article 1) en utilisant une technique d’analyse volumétrique (Voxel-Based Morphometry) que les aveugles de naissance (AN) montrent une diminution de la partie postérieure de l’hippocampe droit, structure cérébrale importante dans la formation de cartes spatiales. Comment les AN forment-ils des cartes cognitives de leur environnement avec un hippocampe postérieur droit qui est significativement réduit ? Pour répondre à cette question nous avons choisi d’exploiter un appareil de substitution sensorielle qui pourrait potentiellement servir à la navigation chez les AN. Cet appareil d’affichage lingual (Tongue display unit -TDU-) retransmet l’information graphique issue d’une caméra sur la langue. Avant de demander à nos sujets de naviguer à l’aide du TDU, il était nécessaire de nous assurer qu’ils pouvaient « voir » des objets dans l’environnement grâce au TDU. Nous avons donc tout d’abord évalué l’acuité « visuo »-tactile (article 2) des sujets AN pour les comparer aux performances des voyants ayant les yeux bandées et munis du TDU. Ensuite les sujets ont appris à négocier un chemin à travers un parcours parsemé d’obstacles i (article 3). Leur tâche consistait à pointer vers (détection), et contourner (négociation) un passage autour des obstacles. Nous avons démontré que les sujets aveugles de naissance non seulement arrivaient à accomplir cette tâche, mais encore avaient une performance meilleure que celle des voyants aux yeux bandés, et ce, malgré l’atrophie structurelle de l’hippocampe postérieur droit, et un système visuel atrophié (Ptito et al., 2008). Pour déterminer quels sont les corrélats neuronaux de la navigation, nous avons créé des routes virtuelles envoyées sur la langue par le biais du TDU que les sujets devaient reconnaitre alors qu’ils étaient dans un scanneur IRMf (article 4). Nous démontrons grâce à ces techniques que les aveugles utilisent un autre réseau cortical impliqué dans la mémoire topographique que les voyants quand ils suivent des routes virtuelles sur la langue. Nous avons mis l’emphase sur des réseaux neuronaux connectant les cortex pariétaux et frontaux au lobe occipital puisque ces réseaux sont renforcés chez les aveugles de naissance. Ces résultats démontrent aussi que la langue peut être utilisée comme une porte d’entrée vers le cerveau en y acheminant des informations sur l’environnement visuel du sujet, lui permettant ainsi d’élaborer des stratégies d’évitement d’obstacles et de se mouvoir adéquatement. / Vision is a very important tool for navigation in general. Due to compensatory mechanisms people who are blind from birth are not handicapped in spatio-cognitive abilities, nor in the formation of novel spatial maps. Despite the growing volume of studies on brain plasticity and navigation in the blind, the compensatory neural substrates or the preservation of this function remain unclear. We have recently demonstrated (article 1) by using volumetric analysis techniques (Voxel-Based Morphometry) that early blind individuals (EB) show a reduction of the posterior end of the hippocampus on the right side. This cerebral structure is important for the formation of cognitive maps. How do EB form maps of their environment with a significantly reduced posterior right hippocampus? To answer this question we chose to exploit a sensory substitution device that could potentially serve navigation in EB. This tongue display unit (TDU) is capable of transmitting pictorial imagery in the form of electricity on the tongue. Before asking our participants to navigate using the TDU, it was necessary to ascertain that they could really « see » objects in the environment using the TDU. We thus evaluated the « visuo »-tactile acuity (article 2) of EB compared to sighted blindfolded participants using the TDU. Participants later learned to negotiate a path through an obstacle course (article 3). Their task consisted of pointing to (detection), and avoiding (negotiation) obstacles while advancing through the hallway. We demonstrated that despite a reduced right posterior hippocampus, and an iii atrophied visual system (Ptito et al., 2008) EB not only were able to accomplish this task, but had a better performance than the blindfolded sighted controls. To determine what the neural correlates of navigation in EB are, we devised an fMRI compatible virtual route task conveyed through the tongue (article 4). Participants had to learn to navigate the routes and recognize them. We showed that EB use another cortical network involved in cognitive mapping than the sighted when recognizing routes on the tongue. We have emphasized neural networks connecting parietal and frontal cortices since they are re-enforced in EB. These results show that the tongue can be used as a portal to the brain by transferring pictorial information from the visual environment of participants, allowing the elaboration of strategies to avoid obstacles and move around in their environment.
5

The development of children's perception of hierarchical patterns : an investigation across tasks and populations

Puspitawati, Ira 07 October 2011 (has links) (PDF)
The thesis investigated the development of children's global/local processing hierarchical patterns introduced by Navon (1977). The objectives were to understand more comprehensively the developmental characteristics of children's perception through their global and local processing of hierarchical patterns, by considering the effects of age, stimuli properties, duration of exposure to the stimuli and gender in a perceptual task and a drawing task. These effects were tested in 3 different populations: typically developing children, children with mental retardation and early blind children. The results revealed that typically developing children attended to both the local and global level of processing but these modes of spatial information processing operated independently. In a first step, children before 4 years of age showed dominance of local processing and then a more global processing developed at 4 years of age, and at 5 years of age integrated responses began to emerge. Early blind children showed similar developmental characteristics, although there was a protracted period of local processing dominance. Indeed, these children mainly produced local responses at ages of between 6 and 10 years, and then developed more global responses at 11-12 years and continued to integrate the two levels of analysis at later ages. On the other hand, global dominance was shown in children with mental retardation and their development was affected more by mental age than by chronological age. Moreover, their responses were shown to be sensitive to the fact that meaningful object could be located at the local level, enhancing local processing in this case. These results need further confirmations as the studies of global/local processing in atypical children are not numerous. In particular, the effect of duration of exposure to the stimuli should be further analyzed, because this factor did not seem to have a great effect in our experiments while it seemed more powerful in other studies carried out with adults. Replication of the study with children with mental retardation appears also important to plan for future work, because we can have some doubt relatively the absence of modification through ages of the way these children perceive hierarchical patterns. Finally, defining more precisely what may underlie the gender differences seems also worth to explore since gender did not show a major effect in our results.
6

Chemosensory perception in blind and sighted populations

Manescu, Simona 04 1900 (has links)
No description available.

Page generated in 0.0511 seconds