• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of stress changes in subduction zones from space- and ground-based geodetic observations

Stressler, Bryan James 01 May 2017 (has links)
Temporally and spatially clustered earthquake sequences along plate boundary zones indicate that patterns of seismicity may be influenced by earthquake-induced stress changes. Many studies invoke Coulomb stress change (CSC) as one possible geo-mechanical mechanism to explain stress interactions between earthquakes, their aftershocks, or large subsequent earthquakes; however, few address the statistical robustness of CSC triggering beyond spatial correlations. To address this, I evaluate the accuracy of CSC predictions in subduction zones where Earth’s largest earthquakes occur and generate voluminous and diverse aftershock sequences. A series of synthetic tests are implemented to investigate the accuracy of inferred stress changes predicted by slip distributions inverted from suites of geodetic observations (InSAR, GPS, seafloor geodetic observations) that are increasingly available for subduction zone earthquakes. Through these tests, I determine that inferred stress changes are accurately predicted at distances greater than a critical distance from modeled slip that is most dependent on earthquake magnitude and the proximity of observations to the earthquake itself. This methodology is then applied to the 2010 Mw 8.8 Maule, Chile earthquake sequence to identify aftershocks that may be used to perform statistically robust tests of CSC triggering; however, only 13 aftershocks from a population of 475 events occurred where confidence in CSC predictions is deemed to be high. The inferred CSC for these events exhibit large uncertainties owing to nodal plane uncertainties assigned to the aftershock mechanisms. Additionally, tests of multiple published slip distributions result in inconsistent stress change predictions resolved for the 13 candidate aftershocks. While these results suggest that CSC imparted by subduction megathrust earthquakes largely cannot be resolved with slip distributions inverted from terrestrial geodetic observations alone, the synthetic tests suggest that dramatic improvements can be made through the inclusion of near-source geodetic observations from seafloor geodetic networks. Furthermore, CSC uncertainties will likely improve with detailed earthquake moment tensor catalogs generated from dense regional seismic networks.
2

Fault zone damage, nonlinear site response, and dynamic triggering associated with seismic waves

Wu, Chunquan 05 July 2011 (has links)
My dissertation focuses primarily on the following three aspects associated with passing seismic waves in the field of earthquake seismology: temporal changes of fault zone properties, nonlinear site response, and dynamic triggering. Quantifying the temporal changes of material properties within and around active fault zones (FZ) is important for better understanding of rock rheology and estimating the strong ground motion that can be generated by large earthquakes. As high-amplitude seismic waves propagate through damaged FZ rocks and/or shallow surface layers, they may produce additional damage leading to nonlinear wave propagation effects and temporal changes of material properties (e.g., seismic velocity, attenuation). Previous studies have found several types of temporal changes in material properties with time scales of tens of seconds to several years. Here I systematically analyze temporal changes of fault zone (FZ) site response along the Karadere-Düzce branch of the North Anatolian fault that ruptured during the 1999 İzmit and Düzce earthquake sequences. The coseismic changes are on the order of 20-40%, and are followed by a logarithmic recovery over an apparent time scale of ~1 day. These results provide a bridge between the large-amplitude near-instantaneous changes and the lower-amplitude longer-duration variations observed in previous studies. The temporal changes measured from this high-resolution spectral ratio analysis also provide a refinement for the beginning of the longer more gradual process typically observed by analyzing repeating earthquakes. An improved knowledge on nonlinear site response is critical for better understanding strong ground motions and predicting shaking induced damages. I use the same sliding-window spectral ratio technique to analyze temporal changes in site response associated with the strong ground motion of the Mw6.6 2004 Mid-Niigata earthquake sequence recorded by the borehole stations in Japanese Digital Strong-Motion Seismograph Network (KiK-Net). The coseismic peak frequency drop, peak spectral ratio drop, and the postseismic recovery time roughly scale with the input ground motions when the peak ground velocity (PGV) is larger than ~5 cm/s, or the peak ground acceleration (PGA) is larger than ~100 Gal. The results suggest that at a given site the input ground motion plays an important role in controlling both the coseismic change and postseismic recovery in site response. In a follow-up study, I apply the same sliding-window spectral ratio technique to surface and borehole strong motion records at 6 KiK-Net sites, and stack results associated with different earthquakes that produce similar PGAs. In some cases I observe a weak coseismic drop in the peak frequency when the PGA is as small as ~20-30 Gal, and near instantaneous recovery after the passage of the direct S waves. The percentage of drop in the peak frequency starts to increase with increasing PGA values. A coseismic drop in the peak spectral ratio is also observed at 2 sites. When the PGA is larger than ~60 Gal to more than 100 Gal, considerably stronger coseismic drops of the peak frequencies are observed, followed by a logarithmic recovery with time. The observed weak reductions of peak frequencies with near instantaneous recovery likely reflect nonlinear response with essentially fixed level of damage, while the larger drops followed by logarithmic recovery reflect the generation (and then recovery) of additional rock damage. The results indicate clearly that nonlinear site response may occur during medium-size earthquakes, and that the PGA threshold for in situ nonlinear site response is lower than the previously thought value of ~100-200 Gal. The recent Mw9.0 off the Pacific coast of Tohoku earthquake and its aftershocks generated widespread strong shakings as large as ~3000 Gal along the east coast of Japan. I systematically analyze temporal changes of material properties and nonlinear site response in the shallow crust associated with the Tohoku main shock, using seismic data recorded by the Japanese Strong Motion Network KIK-Net. I compute the spectral ratios of windowed records from a pair of surface and borehole stations, and then use the sliding-window spectral ratios to track the temporal changes in the site response of various sites at different levels of PGA The preliminary results show clear drop of resonant frequency of up to 70% during the Tohoku main shock at 6 sites with PGA from 600 to 1300 Gal. In the site MYGH04 where two distinct groups of strong ground motions were recorded, the resonant frequency briefly recovers in between, and then followed by an apparent logarithmic recovery. I investigate the percentage drop of peak frequency and peak spectral ratio during the Tohoku main shock at different PGA levels, and find that at most sites they are correlated. The third part of my thesis mostly focuses on how seismic waves trigger additional earthquakes at long-range distance, also known as dynamic triggering. Previous studies have shown that dynamic triggering in intraplate regions is typically not as common as at plate-boundary regions. Here I perform a comprehensive analysis of dynamic triggering around the Babaoshan and Huangzhuang-Gaoliying faults southwest of Beijing, China. The triggered earthquakes are identified as impulsive seismic arrivals with clear P- and S-waves in 5 Hz high-pass-filtered three-component velocity seismograms during the passage of large amplitude body and surface waves of large teleseismic earthquakes. I find that this region was repeatedly triggered by at least four earthquakes in East Asia, including the 2001 Mw7.8 Kunlun, 2003 Mw8.3 Tokachi-oki, 2004 Mw9.2 Sumatra, and 2008 Mw7.9 Wenchuan earthquakes. In most instances, the microearthquakes coincide with the first few cycles of the Love waves, and more are triggered during the large-amplitude Rayleigh waves. Such an instantaneous triggering by both the Love and Rayleigh waves is similar to recent observations of remotely triggered 'non-volcanic' tremor along major plate-boundary faults, and can be explained by a simple Coulomb failure criterion. Five earthquakes triggered by the Kunlun and Tokachi-oki earthquakes were recorded by multiple stations and could be located. These events occurred at shallow depth (< 5 km) above the background seismicity near the boundary between NW-striking Babaoshan and Huangzhuang-Gaoliying faults and the Fangshan Pluton. These results suggest that triggered earthquakes in this region likely occur near the transition between the velocity strengthening and weakening zones in the top few kms of the crust, and are likely driven by relatively large dynamic stresses on the order of few tens of KPa.
3

Earthquake Sources and Hazard in northern Central America / Zonas y Amenaza Sísmica en el norte de America Central

Cáceres Calix, Diego José January 2003 (has links)
Northern Central America is a tectonically complex zone defined by its borders with Cocos and North America plates. The Middle America subduction zone and the strike-slip motion along the North America-Caribbean plate boundary, in that order, control most of its deformation. The interaction between the different elements of the studied area is evident from the high seismicity in the region, especially along plate boundaries. Also in the interior of the region, seismicity shows that deformation takes place, though in lesser degree. In a time window of 30 years, three earthquakes with moment magnitude larger than 7 struck northern Central America evincing the need to estimate the seismic hazard for the zone. To tackle the problem, we compiled a catalogue of hypocenters commencing in 1964, defined seismogenic sources and described the evolution of earthquake activity through a Poisson model. Probabilistic seismic hazard (PSH) calculations for the next 50 years were performed. The highest estimate of seismic hazard was obtained for the zone adjacent to the subduction zone. Because of the fundamental importance of demarcating seismogenic sources in the PSH analysis, i.e. defining the seismotectonic model, we extended the catalogue to cover 102 years for the whole northern Central America. We have studied the North America-Caribbean plate boundary in order to refine the fault representation. Different techniques were used, like that of body-waveform modeling, allowing us to limit the extent of depth of faulting to 20 km. The seismic moment tensor was used to estimate the deformation velocities on known tectonic structures, including those of the Honduras depression and borderland faults. Finally, we made use of the Coulomb stress criterion to determine the relation between earthquake occurrence and static stress changes following major earthquakes.
4

Earthquake Sources and Hazard in northern Central America / Zonas y Amenaza Sísmica en el norte de America Central

Cáceres Calix, Diego José January 2003 (has links)
<p>Northern Central America is a tectonically complex zone defined by its borders with Cocos and North America plates. The Middle America subduction zone and the strike-slip motion along the North America-Caribbean plate boundary, in that order, control most of its deformation. The interaction between the different elements of the studied area is evident from the high seismicity in the region, especially along plate boundaries. Also in the interior of the region, seismicity shows that deformation takes place, though in lesser degree. In a time window of 30 years, three earthquakes with moment magnitude larger than 7 struck northern Central America evincing the need to estimate the seismic hazard for the zone. To tackle the problem, we compiled a catalogue of hypocenters commencing in 1964, defined seismogenic sources and described the evolution of earthquake activity through a Poisson model. Probabilistic seismic hazard (PSH) calculations for the next 50 years were performed. The highest estimate of seismic hazard was obtained for the zone adjacent to the subduction zone. Because of the fundamental importance of demarcating seismogenic sources in the PSH analysis, i.e. defining the seismotectonic model, we extended the catalogue to cover 102 years for the whole northern Central America. We have studied the North America-Caribbean plate boundary in order to refine the fault representation. Different techniques were used, like that of body-waveform modeling, allowing us to limit the extent of depth of faulting to 20 km. The seismic moment tensor was used to estimate the deformation velocities on known tectonic structures, including those of the Honduras depression and borderland faults. Finally, we made use of the Coulomb stress criterion to determine the relation between earthquake occurrence and static stress changes following major earthquakes.</p>

Page generated in 0.1021 seconds