Spelling suggestions: "subject:"singularität"" "subject:"nonsingularity""
1 |
CoCoS - Computation of Corner SingularitiesPester, Cornelia 06 September 2006 (has links) (PDF)
This is a documentation of the software package COCOS. The purpose of COCOS is the computation of corner singularities of elliptic equations in polyhedral corners and crack tips. COCOS provides a self-contained library for the generation of structured 2D finite element meshes, including various routines for mesh manipulation, as well as several algorithms for the solution of quadratic eigenvalue problems with Hamiltonian structure. These and further features will be described in this documentation.
|
2 |
The Fourier Singular Complement Method for the Poisson Problem. Part III: Implementation IssuesCiarlet, Jr., Patrick, Jung, Beate, Kaddouri, Samir, Labrunie, Simon, Zou, Jun 11 September 2006 (has links) (PDF)
This paper is the last part of a three-fold article
aimed at some efficient numerical methods for
solving the Poisson problem in three-dimensional
prismatic and axisymmetric domains. In the first
and second parts, the Fourier singular complement
method (FSCM) was introduced and analysed for
prismatic and axisymmetric domains with reentrant
edges, as well as for the axisymmetric domains
with sharp conical vertices. In this paper we
shall mainly conduct numerical experiments to check
and compare the accuracies and efficiencies
of FSCM and some other related numerical methods
for solving the Poisson problem in the
aforementioned domains. In the case of prismatic
domains with a reentrant edge, we shall compare
the convergence rates of three numerical methods:
3D finite element method using prismatic elements,
FSCM, and the 3D finite element method combined
with the FSCM. For axisymmetric domains with a
non-convex edge or a sharp conical vertex we
investigate the convergence rates of the
Fourier finite element method (FFEM) and the
FSCM, where the FFEM will be implemented on both
quasi-uniform meshes and locally graded meshes.
The complexities of the considered algorithms
are also analysed.
|
3 |
Nitsche- and Fourier-finite-element method for the Poisson equation in axisymmetric domains with re-entrant edgesHeinrich, Bernd, Jung, Beate 11 September 2006 (has links) (PDF)
The paper deals with a combination of the Fourier
method with the Nitsche-finite-element method
(as a mortar method). The approach is applied to
the Dirichlet problem of the Poisson equation in
threedimensional axisymmetric domains with
reentrant edges generating singularities.
The approximating Fourier method yields a
splitting of the 3D problem into 2D problems
on the meridian plane of the given domain.
For solving the 2D problems bearing corner
singularities, the Nitsche finite-element
method with non-matching meshes and mesh
grading near reentrant corners is applied.
Using the explicit representation of singular
functions, the rate of convergence of the
Fourier-Nitsche-mortaring is estimated in some
$H^1$-like norm as well as in the $L_2$-norm.
Finally, some numerical results are presented.
|
4 |
The Laplace and the linear elasticity problems near polyhedral corners and associated eigenvalue problemsMeyer, Arnd, Pester, Cornelia 01 September 2006 (has links) (PDF)
The solutions to certain elliptic boundary value problems have singularities with a typical structure near polyhedral corners. This structure can be exploited to devise an eigenvalue problem whose solution can be used to quantify the singularities of the given boundary value problem. It is necessary to parametrize a ball centered at the corner. There are different possibilities for a suitable parametrization; from the numerical point of view, spherical coordinates are not necessarily the best choice. This is why we do not specify a parametrization in this paper but present all results in a rather general form. We derive the eigenvalue problems that are associated with the Laplace and the linear elasticity problems and show interesting spectral properties. Finally, we discuss the necessity of widely accepted symmetry properties of the elasticity tensor. We show in an example that some of these properties are not only dispensable, but even invalid, although claimed in many standard books on linear elasticity.
|
5 |
CoCoS - Computation of Corner SingularitiesPester, Cornelia 06 September 2006 (has links)
This is a documentation of the software package COCOS. The purpose of COCOS is the computation of corner singularities of elliptic equations in polyhedral corners and crack tips. COCOS provides a self-contained library for the generation of structured 2D finite element meshes, including various routines for mesh manipulation, as well as several algorithms for the solution of quadratic eigenvalue problems with Hamiltonian structure. These and further features will be described in this documentation.
|
6 |
The Laplace and the linear elasticity problems near polyhedral corners and associated eigenvalue problemsMeyer, Arnd, Pester, Cornelia 01 September 2006 (has links)
The solutions to certain elliptic boundary value problems have singularities with a typical structure near polyhedral corners. This structure can be exploited to devise an eigenvalue problem whose solution can be used to quantify the singularities of the given boundary value problem. It is necessary to parametrize a ball centered at the corner. There are different possibilities for a suitable parametrization; from the numerical point of view, spherical coordinates are not necessarily the best choice. This is why we do not specify a parametrization in this paper but present all results in a rather general form. We derive the eigenvalue problems that are associated with the Laplace and the linear elasticity problems and show interesting spectral properties. Finally, we discuss the necessity of widely accepted symmetry properties of the elasticity tensor. We show in an example that some of these properties are not only dispensable, but even invalid, although claimed in many standard books on linear elasticity.
|
7 |
The Fourier Singular Complement Method for the Poisson Problem. Part III: Implementation IssuesCiarlet, Jr., Patrick, Jung, Beate, Kaddouri, Samir, Labrunie, Simon, Zou, Jun 11 September 2006 (has links)
This paper is the last part of a three-fold article
aimed at some efficient numerical methods for
solving the Poisson problem in three-dimensional
prismatic and axisymmetric domains. In the first
and second parts, the Fourier singular complement
method (FSCM) was introduced and analysed for
prismatic and axisymmetric domains with reentrant
edges, as well as for the axisymmetric domains
with sharp conical vertices. In this paper we
shall mainly conduct numerical experiments to check
and compare the accuracies and efficiencies
of FSCM and some other related numerical methods
for solving the Poisson problem in the
aforementioned domains. In the case of prismatic
domains with a reentrant edge, we shall compare
the convergence rates of three numerical methods:
3D finite element method using prismatic elements,
FSCM, and the 3D finite element method combined
with the FSCM. For axisymmetric domains with a
non-convex edge or a sharp conical vertex we
investigate the convergence rates of the
Fourier finite element method (FFEM) and the
FSCM, where the FFEM will be implemented on both
quasi-uniform meshes and locally graded meshes.
The complexities of the considered algorithms
are also analysed.
|
8 |
Nitsche- and Fourier-finite-element method for the Poisson equation in axisymmetric domains with re-entrant edgesHeinrich, Bernd, Jung, Beate 11 September 2006 (has links)
The paper deals with a combination of the Fourier
method with the Nitsche-finite-element method
(as a mortar method). The approach is applied to
the Dirichlet problem of the Poisson equation in
threedimensional axisymmetric domains with
reentrant edges generating singularities.
The approximating Fourier method yields a
splitting of the 3D problem into 2D problems
on the meridian plane of the given domain.
For solving the 2D problems bearing corner
singularities, the Nitsche finite-element
method with non-matching meshes and mesh
grading near reentrant corners is applied.
Using the explicit representation of singular
functions, the rate of convergence of the
Fourier-Nitsche-mortaring is estimated in some
$H^1$-like norm as well as in the $L_2$-norm.
Finally, some numerical results are presented.
|
9 |
Finite-Elemente-Mortaring nach einer Methode von J. A. Nitsche für elliptische RandwertaufgabenPönitz, Kornelia 11 September 2006 (has links) (PDF)
Viele technische Prozesse führen auf Randwertprobleme mit partiellen
Differentialgleichungen, die mit Finite-Elemente-Methoden näherungsweise
gelöst werden können. Spezielle Varianten dieser Methoden sind
Finite-Elemente-Mortar-Methoden. Sie erlauben das Arbeiten mit an
Teilgebietsschnitträndern nichtzusammenpassenden Netzen, was für
Probleme mit komplizierten Geometrien, Randschichten, springenden
Koeffizienten sowie für zeitabhängige Probleme von Vorteil sein kann.
Ebenso können unterschiedliche Diskretisierungsmethoden in den einzelnen
Teilgebieten miteinander gekoppelt werden.
In dieser Arbeit wird das Finite-Elemente-Mortaring nach einer Methode
von Nitsche für elliptische Randwertprobleme auf zweidimensionalen
polygonalen Gebieten untersucht. Von besonderem Interesse sind dabei
nichtreguläre Lösungen (u \in H^{1+\delta}(\Omega), \delta>0) mit
Eckensingularitäten für die Poissongleichung sowie die Lamé-Gleichung
mit gemischten Randbedingungen. Weiterhin werden singulär gestörte
Reaktions-Diffusions-Probleme betrachtet, deren Lösungen zusätzlich zu
Eckensingularitäten noch anisotropes Verhalten in Randschichten
aufweisen.
Für jede dieser drei Problemklassen wird das Nitsche-Mortaring
dargelegt. Es werden einige Eigenschaften der Mortar-Diskretisierung
angegeben und a-priori-Fehlerabschätzungen in einer H^1-artigen sowie
der L_2-Norm durchgeführt. Auf lokal verfeinerten Dreiecksnetzen können
auch für Lösungen mit Eckensingularitäten optimale Konvergenzordnungen
nach gewiesen werden. Bei den Lösungen mit anisotropen Verhalten werden
zusätzlich anisotrope Dreiecksnetze verwendet. Es werden auch hier
Konvergenzordnungen wie bei klassischen Finite-Elemente-Methoden ohne
Mortaring erreicht. Numerische Experimente illustrieren die Methode und
die Aussagen zur Konvergenz.
|
10 |
Finite-Elemente-Mortaring nach einer Methode von J. A. Nitsche für elliptische RandwertaufgabenPönitz, Kornelia 29 June 2006 (has links)
Viele technische Prozesse führen auf Randwertprobleme mit partiellen
Differentialgleichungen, die mit Finite-Elemente-Methoden näherungsweise
gelöst werden können. Spezielle Varianten dieser Methoden sind
Finite-Elemente-Mortar-Methoden. Sie erlauben das Arbeiten mit an
Teilgebietsschnitträndern nichtzusammenpassenden Netzen, was für
Probleme mit komplizierten Geometrien, Randschichten, springenden
Koeffizienten sowie für zeitabhängige Probleme von Vorteil sein kann.
Ebenso können unterschiedliche Diskretisierungsmethoden in den einzelnen
Teilgebieten miteinander gekoppelt werden.
In dieser Arbeit wird das Finite-Elemente-Mortaring nach einer Methode
von Nitsche für elliptische Randwertprobleme auf zweidimensionalen
polygonalen Gebieten untersucht. Von besonderem Interesse sind dabei
nichtreguläre Lösungen (u \in H^{1+\delta}(\Omega), \delta>0) mit
Eckensingularitäten für die Poissongleichung sowie die Lamé-Gleichung
mit gemischten Randbedingungen. Weiterhin werden singulär gestörte
Reaktions-Diffusions-Probleme betrachtet, deren Lösungen zusätzlich zu
Eckensingularitäten noch anisotropes Verhalten in Randschichten
aufweisen.
Für jede dieser drei Problemklassen wird das Nitsche-Mortaring
dargelegt. Es werden einige Eigenschaften der Mortar-Diskretisierung
angegeben und a-priori-Fehlerabschätzungen in einer H^1-artigen sowie
der L_2-Norm durchgeführt. Auf lokal verfeinerten Dreiecksnetzen können
auch für Lösungen mit Eckensingularitäten optimale Konvergenzordnungen
nach gewiesen werden. Bei den Lösungen mit anisotropen Verhalten werden
zusätzlich anisotrope Dreiecksnetze verwendet. Es werden auch hier
Konvergenzordnungen wie bei klassischen Finite-Elemente-Methoden ohne
Mortaring erreicht. Numerische Experimente illustrieren die Methode und
die Aussagen zur Konvergenz.
|
Page generated in 0.0786 seconds