• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CoCoS - Computation of Corner Singularities

Pester, Cornelia 06 September 2006 (has links) (PDF)
This is a documentation of the software package COCOS. The purpose of COCOS is the computation of corner singularities of elliptic equations in polyhedral corners and crack tips. COCOS provides a self-contained library for the generation of structured 2D finite element meshes, including various routines for mesh manipulation, as well as several algorithms for the solution of quadratic eigenvalue problems with Hamiltonian structure. These and further features will be described in this documentation.
2

The Fourier Singular Complement Method for the Poisson Problem. Part III: Implementation Issues

Ciarlet, Jr., Patrick, Jung, Beate, Kaddouri, Samir, Labrunie, Simon, Zou, Jun 11 September 2006 (has links) (PDF)
This paper is the last part of a three-fold article aimed at some efficient numerical methods for solving the Poisson problem in three-dimensional prismatic and axisymmetric domains. In the first and second parts, the Fourier singular complement method (FSCM) was introduced and analysed for prismatic and axisymmetric domains with reentrant edges, as well as for the axisymmetric domains with sharp conical vertices. In this paper we shall mainly conduct numerical experiments to check and compare the accuracies and efficiencies of FSCM and some other related numerical methods for solving the Poisson problem in the aforementioned domains. In the case of prismatic domains with a reentrant edge, we shall compare the convergence rates of three numerical methods: 3D finite element method using prismatic elements, FSCM, and the 3D finite element method combined with the FSCM. For axisymmetric domains with a non-convex edge or a sharp conical vertex we investigate the convergence rates of the Fourier finite element method (FFEM) and the FSCM, where the FFEM will be implemented on both quasi-uniform meshes and locally graded meshes. The complexities of the considered algorithms are also analysed.
3

Nitsche- and Fourier-finite-element method for the Poisson equation in axisymmetric domains with re-entrant edges

Heinrich, Bernd, Jung, Beate 11 September 2006 (has links) (PDF)
The paper deals with a combination of the Fourier method with the Nitsche-finite-element method (as a mortar method). The approach is applied to the Dirichlet problem of the Poisson equation in threedimensional axisymmetric domains with reentrant edges generating singularities. The approximating Fourier method yields a splitting of the 3D problem into 2D problems on the meridian plane of the given domain. For solving the 2D problems bearing corner singularities, the Nitsche finite-element method with non-matching meshes and mesh grading near reentrant corners is applied. Using the explicit representation of singular functions, the rate of convergence of the Fourier-Nitsche-mortaring is estimated in some $H^1$-like norm as well as in the $L_2$-norm. Finally, some numerical results are presented.
4

The Laplace and the linear elasticity problems near polyhedral corners and associated eigenvalue problems

Meyer, Arnd, Pester, Cornelia 01 September 2006 (has links) (PDF)
The solutions to certain elliptic boundary value problems have singularities with a typical structure near polyhedral corners. This structure can be exploited to devise an eigenvalue problem whose solution can be used to quantify the singularities of the given boundary value problem. It is necessary to parametrize a ball centered at the corner. There are different possibilities for a suitable parametrization; from the numerical point of view, spherical coordinates are not necessarily the best choice. This is why we do not specify a parametrization in this paper but present all results in a rather general form. We derive the eigenvalue problems that are associated with the Laplace and the linear elasticity problems and show interesting spectral properties. Finally, we discuss the necessity of widely accepted symmetry properties of the elasticity tensor. We show in an example that some of these properties are not only dispensable, but even invalid, although claimed in many standard books on linear elasticity.
5

CoCoS - Computation of Corner Singularities

Pester, Cornelia 06 September 2006 (has links)
This is a documentation of the software package COCOS. The purpose of COCOS is the computation of corner singularities of elliptic equations in polyhedral corners and crack tips. COCOS provides a self-contained library for the generation of structured 2D finite element meshes, including various routines for mesh manipulation, as well as several algorithms for the solution of quadratic eigenvalue problems with Hamiltonian structure. These and further features will be described in this documentation.
6

The Laplace and the linear elasticity problems near polyhedral corners and associated eigenvalue problems

Meyer, Arnd, Pester, Cornelia 01 September 2006 (has links)
The solutions to certain elliptic boundary value problems have singularities with a typical structure near polyhedral corners. This structure can be exploited to devise an eigenvalue problem whose solution can be used to quantify the singularities of the given boundary value problem. It is necessary to parametrize a ball centered at the corner. There are different possibilities for a suitable parametrization; from the numerical point of view, spherical coordinates are not necessarily the best choice. This is why we do not specify a parametrization in this paper but present all results in a rather general form. We derive the eigenvalue problems that are associated with the Laplace and the linear elasticity problems and show interesting spectral properties. Finally, we discuss the necessity of widely accepted symmetry properties of the elasticity tensor. We show in an example that some of these properties are not only dispensable, but even invalid, although claimed in many standard books on linear elasticity.
7

The Fourier Singular Complement Method for the Poisson Problem. Part III: Implementation Issues

Ciarlet, Jr., Patrick, Jung, Beate, Kaddouri, Samir, Labrunie, Simon, Zou, Jun 11 September 2006 (has links)
This paper is the last part of a three-fold article aimed at some efficient numerical methods for solving the Poisson problem in three-dimensional prismatic and axisymmetric domains. In the first and second parts, the Fourier singular complement method (FSCM) was introduced and analysed for prismatic and axisymmetric domains with reentrant edges, as well as for the axisymmetric domains with sharp conical vertices. In this paper we shall mainly conduct numerical experiments to check and compare the accuracies and efficiencies of FSCM and some other related numerical methods for solving the Poisson problem in the aforementioned domains. In the case of prismatic domains with a reentrant edge, we shall compare the convergence rates of three numerical methods: 3D finite element method using prismatic elements, FSCM, and the 3D finite element method combined with the FSCM. For axisymmetric domains with a non-convex edge or a sharp conical vertex we investigate the convergence rates of the Fourier finite element method (FFEM) and the FSCM, where the FFEM will be implemented on both quasi-uniform meshes and locally graded meshes. The complexities of the considered algorithms are also analysed.
8

Nitsche- and Fourier-finite-element method for the Poisson equation in axisymmetric domains with re-entrant edges

Heinrich, Bernd, Jung, Beate 11 September 2006 (has links)
The paper deals with a combination of the Fourier method with the Nitsche-finite-element method (as a mortar method). The approach is applied to the Dirichlet problem of the Poisson equation in threedimensional axisymmetric domains with reentrant edges generating singularities. The approximating Fourier method yields a splitting of the 3D problem into 2D problems on the meridian plane of the given domain. For solving the 2D problems bearing corner singularities, the Nitsche finite-element method with non-matching meshes and mesh grading near reentrant corners is applied. Using the explicit representation of singular functions, the rate of convergence of the Fourier-Nitsche-mortaring is estimated in some $H^1$-like norm as well as in the $L_2$-norm. Finally, some numerical results are presented.
9

Finite-Elemente-Mortaring nach einer Methode von J. A. Nitsche für elliptische Randwertaufgaben

Pönitz, Kornelia 11 September 2006 (has links) (PDF)
Viele technische Prozesse führen auf Randwertprobleme mit partiellen Differentialgleichungen, die mit Finite-Elemente-Methoden näherungsweise gelöst werden können. Spezielle Varianten dieser Methoden sind Finite-Elemente-Mortar-Methoden. Sie erlauben das Arbeiten mit an Teilgebietsschnitträndern nichtzusammenpassenden Netzen, was für Probleme mit komplizierten Geometrien, Randschichten, springenden Koeffizienten sowie für zeitabhängige Probleme von Vorteil sein kann. Ebenso können unterschiedliche Diskretisierungsmethoden in den einzelnen Teilgebieten miteinander gekoppelt werden. In dieser Arbeit wird das Finite-Elemente-Mortaring nach einer Methode von Nitsche für elliptische Randwertprobleme auf zweidimensionalen polygonalen Gebieten untersucht. Von besonderem Interesse sind dabei nichtreguläre Lösungen (u \in H^{1+\delta}(\Omega), \delta>0) mit Eckensingularitäten für die Poissongleichung sowie die Lamé-Gleichung mit gemischten Randbedingungen. Weiterhin werden singulär gestörte Reaktions-Diffusions-Probleme betrachtet, deren Lösungen zusätzlich zu Eckensingularitäten noch anisotropes Verhalten in Randschichten aufweisen. Für jede dieser drei Problemklassen wird das Nitsche-Mortaring dargelegt. Es werden einige Eigenschaften der Mortar-Diskretisierung angegeben und a-priori-Fehlerabschätzungen in einer H^1-artigen sowie der L_2-Norm durchgeführt. Auf lokal verfeinerten Dreiecksnetzen können auch für Lösungen mit Eckensingularitäten optimale Konvergenzordnungen nach gewiesen werden. Bei den Lösungen mit anisotropen Verhalten werden zusätzlich anisotrope Dreiecksnetze verwendet. Es werden auch hier Konvergenzordnungen wie bei klassischen Finite-Elemente-Methoden ohne Mortaring erreicht. Numerische Experimente illustrieren die Methode und die Aussagen zur Konvergenz.
10

Finite-Elemente-Mortaring nach einer Methode von J. A. Nitsche für elliptische Randwertaufgaben

Pönitz, Kornelia 29 June 2006 (has links)
Viele technische Prozesse führen auf Randwertprobleme mit partiellen Differentialgleichungen, die mit Finite-Elemente-Methoden näherungsweise gelöst werden können. Spezielle Varianten dieser Methoden sind Finite-Elemente-Mortar-Methoden. Sie erlauben das Arbeiten mit an Teilgebietsschnitträndern nichtzusammenpassenden Netzen, was für Probleme mit komplizierten Geometrien, Randschichten, springenden Koeffizienten sowie für zeitabhängige Probleme von Vorteil sein kann. Ebenso können unterschiedliche Diskretisierungsmethoden in den einzelnen Teilgebieten miteinander gekoppelt werden. In dieser Arbeit wird das Finite-Elemente-Mortaring nach einer Methode von Nitsche für elliptische Randwertprobleme auf zweidimensionalen polygonalen Gebieten untersucht. Von besonderem Interesse sind dabei nichtreguläre Lösungen (u \in H^{1+\delta}(\Omega), \delta>0) mit Eckensingularitäten für die Poissongleichung sowie die Lamé-Gleichung mit gemischten Randbedingungen. Weiterhin werden singulär gestörte Reaktions-Diffusions-Probleme betrachtet, deren Lösungen zusätzlich zu Eckensingularitäten noch anisotropes Verhalten in Randschichten aufweisen. Für jede dieser drei Problemklassen wird das Nitsche-Mortaring dargelegt. Es werden einige Eigenschaften der Mortar-Diskretisierung angegeben und a-priori-Fehlerabschätzungen in einer H^1-artigen sowie der L_2-Norm durchgeführt. Auf lokal verfeinerten Dreiecksnetzen können auch für Lösungen mit Eckensingularitäten optimale Konvergenzordnungen nach gewiesen werden. Bei den Lösungen mit anisotropen Verhalten werden zusätzlich anisotrope Dreiecksnetze verwendet. Es werden auch hier Konvergenzordnungen wie bei klassischen Finite-Elemente-Methoden ohne Mortaring erreicht. Numerische Experimente illustrieren die Methode und die Aussagen zur Konvergenz.

Page generated in 0.0795 seconds