• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 3
  • Tagged with
  • 12
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aminosubstituierte Terphenyle als neue Leitstruktur für allostere Modulatoren muscarinischer M2-Acetylcholinrezeptoren / Aminosubstituted terphenyls as new leadstructures for allosteric modulators of the muscarinic M2-acetylcholine receptors

Teichgräber, Jürgen January 2004 (has links) (PDF)
Die muscarinischen Rezeptoren sind ein wichtiger Bestandteil des parasympathischen Nervensystems. Sie gehören zur großen Gruppe der G-Protein-gekoppelten Rezeptoren, die nach ihrer Verwandtschaft in drei große Klassen eingeteilt werden können. Die muscarinischen Rezeptoren gehören zur Klasse A, den rhodopsinähnlichen Rezeptoren. Durch die im Jahr 2000 vorgenommene Aufklärung der hochauflösenden Röntgenkristallstruktur des Rinderrhodpsins und die hohe Aminosäuresequenzähnlichkeit der G-Protein-gekoppelten Rezeptoren hat man eine sehr gute Modellvorstellung über den Aufbau der G-Protein-gekoppelten Rezeptoren. Die Rezeptoren bestehen aus sieben transmembranalen Helices, die von drei intrazellulären und drei extrazellulären Loops stabilisiert werden. Bis heute konnten fünf Rezeptorsubtypen gentechnisch klassifiziert werden, die sich durch ihre Gewebeverteilung und Funktion unterscheiden. Allen Subtypen ist eine hohe Sequenzhomologie im Bereich der orthosteren Bindungsstelle gemeinsam, so dass die Entwicklung von subtyp-spezifischen orthosteren Liganden sehr schwierig ist. Außer der orthosteren Bindungsstelle konnte noch eine weitere Bindungsstelle am muscarinischen Rezeptor identifiziert werden. Diese befindet sich weiter außerhalb im Rezeptor in einem Bereich, der über die fünf Rezeptorsubtypen nicht sehr stark konserviert ist, so dass die Entwicklung von subtyp-spezifischen Liganden möglich ist. An dieser zweiten Bindungsstelle binden allostere Modulatoren. Hierbei handelt es sich um Substanzen, die ohne den orthosteren Liganden keinen Effekt am Rezeptor auslösen, dafür aber die Gleichgewichtsbindung des orthosteren Liganden beeinflussen können. Der Einfluss auf die Gleichgewichtsbindung geschieht wechselseitig und kann positiv, neutral oder negativ kooperativ sein. Zusätzlich üben allostere Modulatoren einen Effekt auf die Dissoziation des orthosteren Liganden aus. Die meisten bisher gefunden allosteren Modulatoren erniedrigen die Dissoziationsgeschwindikeit des orthosteren Liganden vom Rezeptor. Die Summe dieser Eigenschaften machen die allosteren Modulatoren sehr interessant für die Arzneimitteltherapie. Das Ziel dieser Arbeit war die Synthese strukturell neuer allosterer Modulatoren des muscarinischen Rezeptors unter Anwendung des postulierten Pharmakophormodells. Als Ausgangspunkt sollten geländerhelicale Moleküle dienen, die strukturell abgewandelt dieses Pharmakophormodell sehr gut erfüllen. Die geländerhelicalen Moleküle ähneln in ihrem dreidimensionalen Aufbau dem Geländer einer Wendeltreppe. Sie sind durch die Brücken zwischen den aromatischen Bereichen sehr rigide Moleküle, so dass es nur wenige genau definierte Konformationen gibt. Grundsätzlich können drei Atropisomere unterschieden werden, wobei zwei zueinander enantiomer sind. Geplant war die Synthese eine Reihe von tertiären Aminen oder quartären Ammoniumsalzen. Die Synthese der Ausgangsverbindung konnte nach der Vorschrift von Kiupel erfolgen, war aber nur mit geringer Ausbeute möglich. Deshalb wurde dieser Syntheseweg nicht weiterverfolgt. Als Alternative bot sich an, auf die Brücken zwischen den aromatischen Ringen zu verzichten. Die so entstandenen Verbindungen sind weniger rigide und können sich deshalb gegebenenfalls besser an den Rezeptor anpassen. Grundsätzlich können je nach Substitutionsmuster zwei Synthesewege verfolgt werden. Beide Varianten erfüllen das postulierte Pharmakophormodell. Der Aufbau des Grundgerüstes erfolgt mittels einer nickelkatalysierten Grignard-Kupplung. Danach erfolgen eine Wohl-Ziegler-Seitenkettenbromierung und eine Verlängerung der Seitenkette im Sinne einer Alkylierung mittels Malonsäurediethylester und einer Hilfsbase. Anschließend erfolgen die Decarboxylierung und die Umsetzung zum Amid, das zum Amin reduziert werden kann. Betrachtet man die Lage der Pharmakophorelemente so variiert der Abstand der positiv geladenen Stickstoffe je nach Konformation zwischen 5 Å und 15 Å, so dass ein weiter Bereich abgedeckt werden kann. Der Abstand der aromatischen Bereiche bleibt relativ stabil. Die pharmakologische Testung der Verbindungen auf ihre allostere Potenz und Affinität zum muscarinischen Rezeptor erfolgte in der Arbeitsgruppe von Prof. Mohr in Bonn. Hierzu werden Membranhomogenate vom Herzventrikelgewebe des Hausschweines verwendet. Diese enthalten mit großer Prävalenz muscarinische M2-Rezeptoren. Es wurden Gleichgewichtsbindungs- und Dissoziationsexperimente durchgeführt. Bis jetzt sind noch nicht alle Verbindungen getestet worden. Die bisher getesteten Verbindungen weisen alle eine Affinität zum mit [3H]-N-Methylscopolamin besetzten muscarinischen M2-Rezeptor im mikro-molaren Bereich auf. Sie liegen damit im oberen Bereich der bisher synthetisierten allosteren Modulatoren. Das postulierte Pharmakophormodell konnte also mit Hilfe der synthetisierten Substanzen bestätigt werden. / The muscarinic receptors are an important part of the parasympathic nervous system. They belong to the group of G protein-coupled receptors. Up to now about 1000 members of this group have been identified and were classified into three families. The muscarinic receptors belong to family A, the rhodopsine-like receptors, which is also the biggest family. Due to the high resolution X-ray crystallography analysis of bovine rhodopsine and the high similarity of the protein sequences of the G protein-coupled receptors, there is a good model describing the structure of the G protein-coupled receptors. The receptor consists of seven transmembranale helices which are stabilised by three extra- and three intracellular loops. Up to now five receptor subtypes are genetically classified which differ in tissue partitioning and function. All subtypes possess a high sequence similarity within the area of the orthosteric binding site. Therefore the development of subtypspecific orthosteric ligands is very difficult. Apart from the orthosteric site a second binding site at the muscarinic receptor could be identified located outside the receptor at a position which is not highly conserved over the five receptor subtypes. Due to this fact the development of subtypspecific ligands could be possible. At this second site allosteric modulators are able to bind. Allosteric modulators are substances which have no effect on the receptor without the binding of the orthosteric ligand, but affect the equilibrium binding of the orthosteric ligand. Influence on the equilibrium binding occurs mutual and is positively, neutral or negatively cooperative. Additionally allosteric modulators have an effect on the dissociation of the orthosteric ligand. Most of the known allosteric modulators reduce the dissociation rate of the orthosteric ligand from the receptor. These properties make allosteric modulators very interesting for medication. Their use could make a smooth and selective modulation of the orthosteric ligand´s effect on one special subtype within a wide therapeutic range possible. A positive cooperative allosteric modulator of the M2-receptor could enhance selectively the affinity of an orthosteric ligand to the receptor. The aim of this dissertation was the synthesis of structurally new allosteric modulators of the muscarinic receptor using the postulated pharmacophore model. Structurally modified “geländerhelicale” molecules served as starting point because they fit perfectly in the postulated pharmacophore model. The 3D structure of a “geländerhelical” molecule is similar to the banisters of a spiral staircase. Due to the bridges between the aromatic rings these molecules are very rigid so that there is a limited set of conformations. In principle three atropisomers can be distinguished, two of them are enantiomers. The synthesis of some tertiary amines or quartäry ammonia salts was intended. The first steps of the synthesis followed Kiupel´s synthesis scheme. Since the last-mentioned ring closure could only be performed with poor yields and a couple of reactions had to follow to obtain the pure product, the strategy was slightly changed. As an alternative the bridges between the aromatic rings were omitted. The compounds are less rigid and have the ability to adopt the receptor’s shape. Two synthesis strategies are possible. Both variations fulfil the postulated pharmacophore model. In case of pathway A the stereochemistry does not change. It could be distinguished between three atropisomers, two of them are enantiomers. In case of pathway B two atropisomers could be distinguished which are diastereomers. Due to higher yields pathway B was preferred. The skeleton was built up by means of a nickel catalysed Grignard coupling. After that the two side chains were brominated by a Wohl-Ziegler-bromination and alkylated by the use of diethyl malonate and a strong base. Afterwards the esters were decarboxylated and converted to the amide which could be reduced to the amine. Looking at the pharmacophoric elements the distance between the positive nitrogens varies due to the conformation between 5 Å and 15 Å, therefore a wide range is covered. The distance between the aromatic ring systems is nearly constant. The pharmacological testing of the compounds due to there allosterical potency and affinity to the muscarinic receptor were performed by the group of Prof. Mohr at Bonn using membrane suspensions of the guinea pig’s heart ventricle tissue. They contain muscarinic M2-receptors with high prevalence. Equilibrium binding and dissociation assays were performed. Up to now not all compounds are tested. The tested compounds show affinity to the [3H]NMS occupied muscarinic M2-receptor in a micro-molar range. The affinity falls into an upper range of the already synthesised compounds. All in all the postulated pharmacophore model could be confirmed by the synthesised compounds.
2

Synthese und pharmakologische Untersuchung allosterer Modulatoren der muscarinischen M2-Acetylcholinrezeptoren /

Nassif-Makki, Tamer. January 1995 (has links) (PDF)
Universiẗat, Diss.--Bonn, 1995.
3

Novel heterocyclic ring systems derived from caracurine V as ligands for the allosteric site of muscarinic M2 receptors

Kittisak Sripha. Unknown Date (has links) (PDF)
University, Diss., 2003--Würzburg.
4

NOVEL HETEROCYCLIC RING SYSTEMS DERIVED FROM CARACURINE V AS LIGANDS FOR THE ALLOSTERIC SITE OF MUSCARINIC M 2 RECEPTORS / Neue heterozyklische Ringsysteme abgeleitet von Caracurine V als Liganden für die allosteriche Bindungstelle der Muscarin-M2-Rezeptoren

Kittisak Sripha January 2003 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit dem Gebiet allosterischer Modulation des muscarinischen M2 Rezeptors. Allosterische Liganden beeinflussen das Bindungsverhalten eines orthosterischen Liganden (Agonisten oder Antagonisten) an die klassische Bindungsstelle des muscarinischen Rezeptors, indem sie seine Affinität entweder erhöhen(positive Kooperativität) oder erniedrigen (negative Kooperativität). Die allosterische Bindungsstelle befindet sich extrazellulär am Eingang der Rezeptor-Bindungstasche. Sie ist weniger konserviert als die orthosterische Bindungsdomäne, die tiefer im Rezeptorkanal zwischen den sieben transmembranalen Domänen lokalisiert ist. Demzufolge ist die Entwicklung subtyp-spezifischer allosterisch wirkenden Liganden leichter als subtypspezifischer Agonisten oder Antagonisten. Die Subtypselektivität kann darüber hinaus über unterschiedliche Kooperativitäten zwischen dem orthosterischen und allosterischen Liganden an verschiedenen muscarinischen Subtypen erreicht werden. Ein am M1-Rezeptor mit Acetylcholin positiv kooperativer allosterer Modulator, der sich an anderen muscarinischen Subtypen neutral kooperativ verhält, könnte z.B. für die Therapie von Morbus Alzheimer eingesetzt werden. Bisquartäre Ammoniumsalze des Strychnos-Alkaloids Caracurin-V gehören zu den potentesten allosterischen M2-Liganden. Die relative Stellung der aromatischen Indolringe und der Abstand zwischen den positiv geladenen Stickstoffatomen (ca. 10) in dem sehr starren Caracurin-V-Ringsystem definieren den Pharmakophor für potente allosterische Modulatoren. Caracurin-V-Salze sind strukturell sehr verwandt mit den starken Muskelrelaxantien Toxiferin-I und Alcuronium und besitzen vermutlich selbst neuromuskulär-blockierende Eigenschaften, was ihre Anwendung in der pharmakologischen Forschung einschränken würde. Reduktion des Caracurin-V-Ringsystems auf die wesentlichen Pharmakophorelemente könnte zu allosterisch wirksamen Verbindungen mit vernachlässigbarer muskelrelaxierender Wirkung führen. Ziel dieser Arbeit war die Synthese und pharmakologische Testung von Derivaten eines neuen, von Caracurin V abgeleiteten, heterocyclischen Ringsystems. Das neue gewünscht 6,7,14,15-Tetrahydro[1,5]diazocino[1,2-a:6,5-a]-diindole-Ringsystem(6) wurde in einer intermolekularen N-Alkylierung von zwei Molekülen Bromethylindol 5 aufgebaut. Die Ausgangsverbindung 5 konnte aus dem Indolylessigsäuremethylester 3 durch Reduktion der Estergruppe zum Alkohol und anschließende Substitution durch Brom dargestellt werden. Der bekannte Ester 3 wurde ausgehend von Tryptamin erhalten. Die dreistufige Synthese umfasste N-Dibenzylierung, Einführung der Malonestergruppe am C-2 von Indol und anschließende Demethoxycarbonylierung. Die Totalsynthese des neuen Pentacyclus ist im Schema 24 dargestellt. Die 3D-Struktur des neuen Ringgerüstes konnte mit Hilfe von NMR-Spektroskopie und semiempirischen Rechnungen (AM1) aufgeklärt werden. Verbindung 6 liegt in Lösung in einer verdrehten Wanne-Konformation mit unsymmetrisch angeordneten Seitenketten vor. Um den Einfluss der Seitenkettenlänge des neuen Ringsystems auf die allosterische Wirksamkeit zu untersuchen, war es geplannt, die Ethylamin-Gruppen durch Methylamin-Einheiten zu ersetzen. Der entsprechende Syntheseplan bestand darin, das unsubstituierte Ringsystem in einer doppelten Mannich-Reaktion zu aminomethylieren. Der Ausgangsstoff für die Dimerisierung, Bromethylindol 32, wurde aus Indol-2-carbonsäure hergestellt. Die Synthese umfasste folgende Reaktionsschritte: Reduktion der Carboxylgruppe und Benzoylierung des resultierenden Alkohols, nucleophile Substitution mit Kaliumcyanid, alkalische Hydrolyse des Cyanids zu Indolacetessigsäure, erneute Reduktion zum Alkohol und abschließende Substitution mit Brom. Da Dimerisierungsversuche von 32 nur zur Bildung des HBr-Eliminierungsproduktes 33 führten, wurde das entsprechende Tosylat als Ausgangsstoff eingesetzt. Überraschenderweise entstand nicht das erwartete Diazocinodiindol-Ringgerüst, sondern ausschließlich ein isomeres, noch nicht bekanntes 6,7,14,15-Tetrahydro-15aH-azocino[1,2-a:6,5-b]diindol-Ringsystem 35. Die Bildung des neuen unsymmetrischen Ringsystems ist auf den ambidenten Charakter des Indolylanions zurückzuführen, das entweder am Sticksoff oder an C3 alkyliert werden kann. Umsetzung von 35 nach Mannich lieferte das bisaminoalkylierte Produkt 37, neben einer kleinen Menge der monoalkylierten Verbindung 36. Die Totalsynthese des zweiten Ringsystems ist im Schema 25 dargestellt. Um potentere Verbindungen zu erhalten, wurden beide Endstufen 6 bzw. 37 mit Methyliodid zu 14 bzw. 38 quaternisiert. 37 wurde zusätzlich mit Allylgruppen zu 39 substituiert. Die pharmakologische Testung von 14, 37, und 38 erfolgte über Radioligandbindungsstudien an Membransuspensionen der Herzventrikel des Hausschweins. Der allostere Effekt der Testverbindungen wurde über die Hemmung der Dissoziation von [3H]-N-Methylscopolamin([3H]-NMS) von den damit gesättigten Rezeptoren gemessen. Die erhaltenen EC50,diss-Werte geben die Konzentration des allosteren Modulators an, bei der die [3H]-NMS-Dissoziation auf die Hälfte des Kontrollwertes reduziert ist. Sie sind ein Maß für die Affinität der Testsubstanzen zur allosterischen Bindungsstelle des M2 Rezeptors. Für die einzige Verbindung mit dem Diazocinodiindole-Ringsystem 14 wurde ein EC50,diss-Wert von 54 nM gemessen. Da 14 über vier Benzylsubstituenten verfügt, kann seine Bindungsaffinität am besten mit der von Dibenzylcaracurinium-Dibromid verglichen werden, die ganz ähnlich ist (69 nM). Aufgrund der Tatsache, dass die Verkleinerung des NSubstituenten am Caracurin-V-Gerüst zur erheblichen Steigerung der allosterischen Potenz führte, ist zu erwarten, dass der Austausch der voluminösen Benzylgruppen von 14 durch z.B. Methyl- oder Allylsubstituenten, eine deutliche Affinitätssteigerung bewirken würde. Damit scheint die allosterische Potenz des neuen Ringsystems mindestens genauso gut zu sein, wie die von Caracurin V. Die beiden Vertreter des Azocinodiindol-Ringsystems, 38 und 39, sind bereits mit den Gruppen substituiert, die die beste allosterische Potenz bei dem Caracurin-V-Ringsystem zeigten (Methyl- und Allyl). Ihre EC50,diss-Werte (35 nM für 38, 48 nM für 39) sprechen jedoch für eine ca. 4-fach schwächere Bindungsaffinität als die der entsprechenden Caracurine, was vermutlich auf einen anderen Abstand zwischen den quartären Stickstoffatomen und eine andere relative Stellung der Indolaromaten in den beiden Ringsystemen zurückzuführen ist. Anders als die entsprechenden Caracurin-V-Salze, sind 38 und 39 negativ kooperativ mit dem Antagonisten [3H]NMS. Zusammenfassend lässt sich feststellen, dass von den beiden neu synthetisierten heterocyclischen Ringsystemen das direkt von Caracurin V abgeleitete Tetrahydro- [1,5]diazocino[1,2-a:6,5-a]diindol eine bessere und vielversprechende Leitstruktur für die Entwicklung neuer potenter allosterischen Liganden des M2-Rezeptors darstellt. Weitere synthetische Arbeiten an dem Ringsystem wie z.B. Variation des Sticksstoffsubstituenten und der Seitenkettenlänge sollten zu einer Steigerung der Bindungsaffinität in den subnanomolaren Bereich führen. Darüber hinaus sind die Ergebnisse der pharmakologischen Testung an dem muskulären Typ des nicotinischen Acetylcholinrezeptors abzuwarten. / The study deals with the area of the allosteric modulation of the muscarinic M2 receptors. The allosteric modulators have an influence on binding of orthosteric ligands (agonists and antagonists) to the classical orthosteric binding site of the muscarinic M2-receptors. The modulators are able to enhance (positive cooperativity) or decrease (negative cooperativity)the affinity of ligands to the orthosteric binding site. The allosteric binding site is located at the entrance of the receptor binding pocket. It is less conserved than the orthosteric binding site which is located in a narrow cavity created by the seven transmembrane domains. Consequently, development of subtype selective allosteric ligands is easier than subtypeselective muscarinic agonists or antagonists. Furthermore, subtype selectivity can be achieved by differently cooperative interactions between the allosteric and orthosteric ligand at different receptor subtypes. For example, the allosteric modulators that are positively cooperative with ACh at M1 receptors and neutrally cooperative at the other receptor subtypes could be beneficial for treatment of the Alzheimer’s disease. Bisquaternary analogues of the Strychnos alkaloid caracurine V are among the most potent allosteric modulators of muscarinic M2-receptors. The very rigid ring skeleton comprises the pharmacophoric elements of two positively charged nitrogens at an approximate distance of 10 surrounded by two aromatic ring systems in a distinct spatial arrangement. Owing to the close structural relationship of caracurine V salts to the strong muscle relaxants toxiferine and alcuronium, they are likely to exhibit neuromuscular blocking activity, which would limit their usefulness as research tools and make the therapeutical use impossible. Reduction of the caracurine V ring skeletons to structural features responsible for good allosteric potency could possibly lead to compounds with negligible neuromuscular blocking activity and very high affinity to the allosteric binding site at M2 receptor. Thus, the aim of this study was to synthesize and pharmacologically evaluate analogues of a novel heterocyclic ring system, which comprises the pharmacophoric elements mentioned previously. The key step of the synthesis of the desired 6,7,14,15-tetrahydro[1,5]diazocino[1,2-a:6,5-a]-diindole ring system (6) involved the intermolecular double N-alkylation of the bromoethylindole (5), which was prepared from the known indolyl methylacetate (3) by reduction of the ester group to alcohol and subsequent substitution by bromine. 3 could be prepared in three steps involving N,N-dibenzylation of tryptamine followed by introduction of the dimethyl malonate moiety at C-2 of indole ring and a subsequent demethoxycarbonylation. The total synthesis of 6,7,14,15-tetrahydro[1,5]diazocino[1,2-a:6,5-a]diindole ring system (6) is shown in Scheme 24. In order to examine the influence of the length of the side-chain on muscarinic activity,exchange of the ethylamine moieties of 14 by the methylamino groups was planned. This should be accomplished by dimerization of the unsubstituted 2-bromoethylindole (32), and subsequent Mannich aminomethylation of the resulting unsubstituted pentacyclic ring. The total synthesis of the 6,7,14,15-tetrahydro-15aH-azocino[1,2-a:6,5-b]diindole ring system(35) is shown in Scheme 25. 32 was prepared from indole-2-carboxylic acid in six steps involving reduction of the acid to the corresponding alcohol 26, benzoylation of 26 followed by nucleophilic substitution with KCN, hydrolysis of the cyanide 28 to indolyl acetic acid 29,reduction of 29 to the corresponding alcohol 30, and finally bromination of 30 to give the bromide 32. Since dimerization attempts of 32 provided only 2-vinylindole (33), the tosylate 34 was used as starting material for the intermolecular alkylation to give exclusively an isomeric pentacyclic ring system, 7,14,15-tetrahydro-15aH-azocino[1,2-a:6,5-b]diindole (35). The formation of the novel, asymmetric ring skeleton can be explained by the ambident nucleophilic character of the indolyl anion that can be alkylated either at nitrogen or at C-3 of indole ring. 35 was subjected to a Mannich reaction to give 2,13-dimethylaminoalkylated product 37 as well as small amounts of the 13-monosubstituted compound (36). The geometry of novel ring systems 6 was elucidated by means of NMR spectroscopy and semiempirical calculations. The diazocinodiindole ring skeleton of 6 exists in chloroform solution at room temperature in a twisted-boat conformation, as indicated by 600 MHz ROESY experiment, vicinal coupling constants within the eight-membered ring, and AM1 calculations. In order to obtain potent allosteric ligands, the new heterocycles 6 and 37 were quarternized with methyliodide to the corresponding ammonium salts 14 and 38, respectively. Additionally, the N,N -diallylsalts of 37 (compound 39) was prepared. The allosteric effect of 14, 38, and 39 on the dissociation of the orthosteric radioligand [3H]Nmethylscopolamine([3H]NMS) and their effects on [3H]NMS equilibrium binding were studied in homogenates of porcine heart ventricles. The concentration of an allosteric agent for a half-maximum effect on orthosteric ligand dissociation (EC50,diss) corresponds to a 50 % occupancy of the liganded receptors by the respective allosteric test compounds. Due to the presence of two benzyl groups on each nitrogen in the side chains of 14, its binding affinity can be best compared with that of N,N -dibenzylcaracurinium V dibromide (EC50,diss = 69 nM). Compound 14 exhibited the comparable affinity to N,N -dibenzylcaracurinium V dibromide with EC50,diss = 54 nM. This result suggested that replacement of the bulky benzyl groups of 14 by smaller substitutents will probably increase the allosteric potency, since dimethyl- and diallylcaracurinium salts showed a 5-fold increase of binding affinity relative to the dibenzyl analogue. Even though the new azocinodiindole ring system of 38 and 39, is not included in the caracurine V ring skeleton, it comprises the essentially pharmacophoric elements of allosteric potency. Due to the different spatial arrangements of the aromatic rings, as well as to different internitrogen distances in both ring systems, compound 38 and 39 exhibited 4-fold lower M2 binding affinity (EC50,diss = 35 and 48 nM, respectively) than the corresponding caracurine V analogues. This study deals with the synthesis of the first representative (Compound 6) of a novel pentacyclic ring system derived from caracurine V. The high allosteric potency of its dimethyl analogue reveals the [1,5]diazocino[1,2-a:6,5-a]-diindole ring system as a new promising lead structure for allosteric modulators of muscarinic M2 receptors. Future research will be focused on structural modifications of the new ring system in order to increase the affinity to the muscarinic receptors. Furthermore, the binding affinities of the new synthesized compounds to the muscle type of nicotinic ACh-receptor should reveal structural features responsible for the muscarinic/nicotinic selectivity.
5

Synthese und Charakterisierung allosterer Modulatoren muscarinischer M2-Rezeptoren : Strukturvariationen der Bis(ammonium)alkan-Verbindung W84 / Synthesis and characterisation of allosteric modulators of the muscarinic M2-receptor - structural variations of the bis(ammonio)alkane-compound W84

Muth, Mathias January 2004 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung allosterer Modulatoren muscarinischer Rezeptoren. Allostere Modulatoren binden an einer topographisch anderen Stelle am Rezeptor als klassische orthostere Liganden und sind so in der Lage, die Dissoziation und die Assoziation orthosterer Agonisten und Antagonisten zu beeinflussen. Die fünf Subtypen des Muscarinrezeptors M1-M5 unterscheiden sich vor allem in der Aminosäuresequenz der in den äußeren Bereichen des Rezeptorproteins vorhandenen Loops, während sie im Bereich des Rezeptorkanals, wo die orthostere Bindungsstelle lokalisiert ist, eine hohe Sequenzhomologie aufweisen. Die gemeinsame Bindungsstelle allosterer Modulatoren des M2-Rezeptors befindet sich im weniger konservierten extrazellulären Bereich. Somit sind allostere Modulatoren in der Lage, spezifisch an einen der Rezeptorsubtypen zu binden. Als Leitstruktur zum Entwurf der im Rahmen dieser Arbeit synthetisierten Verbindungen diente die Bis(ammonium)alkanverbindung W84. Über Weg A wurden Phthalsäure- bzw. Naphthalsäureanhydridderivate in einer Kondensationsreaktion mit dem entsprechenden N,N-Dimethylpropan-1,3-diaminderivat zum jeweiligen Phthalimidopropylaminderivat umgesetzt. Durch die Reaktion von zwei Äquivalenten des Amins mit einem Äquivalent 1,6-Dibromhexan wurden dann die symmetrischen W84-Derivate erhalten. Um die unsymmetrischen W84-Derivate zu erhalten, musste zunächst das jeweilige Phthalimidopropylamin einseitig durch 1,6-Dibromhexan alkyliert werden. Im letzten Schritt wurden äquimolare Mengen der alkylierten Verbindung und eines Phthalimidopropylamins umgesetzt. Da sich im Laufe der Arbeit die Methylierung an Position 2 der Propylketten als kritische Position zur Beeinflussung der Gleichgewichtsbindung herausstellte, wurden Verbindungen hergestellt, die an den Propylketten Alkylgruppen verschiedener Länge tragen. Aus diesem Grund wurde Syntheseweg B entwickelt. Zunächst wurden in mehreren Stufen, ausgehend von Malonsäurediethylester, einfach und zweifach mit Alkylgruppen substituierte 1,3-Dibrompropanderivate hergestellt. Diese wurden dann mit Kaliumphthalimid zu den jeweiligen 3-Brompropylphthalimidderivaten umgesetzt. Zwei Äquivalente dieser 3-Brompropylphthalimide reagierten mit einem Äquivalent N,N,N’,N’-Tetramethyl-1,6-hexandiamin zu den entsprechenden symmetrischen W84-Derivaten. Ein weiteres Ziel der Arbeit bestand darin, stark fluoreszierende W84-Derivate herzustellen. Die fluoreszierenden Eigenschaften N-substituierter Naphthalimide könnten zur direkten Charakterisierung allosterer Interaktionen oder zur Verfolgung des „Rezeptor-Traffickings“ mittels Fluoreszenzkorrelationsspektroskopie genutzt werden. Deshalb wurden in Position 3 und 4 des Naphthalimidringes des potentesten allosteren Modulators Aminogruppen eingeführt. Hexamethonio-Derivate beeinflussen in nennenswertem Maße bisher nur die Bindung von Antagonisten am M2-Rezeptor. Da die allostere und die orthostere Bindungsstelle räumlich nahe zusammenliegen, wurde der Versuch unternommen, einen orthosteren Agonisten und einen allosteren Modulator in einem Molekül miteinander zu verknüpfen. Es wurden zwölf Hybridmoleküle aus einem Teil des hochaffinen allosteren Modulators 3a und Derivaten des Muscarinagonisten Oxotremorin-M, verbunden durch aliphatische Spacer verschiedener Länge, hergestellt. In pharmakologischen Testungen soll aufgeklärt werden, ob es möglich ist, mit einem Agonist/Alloster-Hybridmolekül gleichzeitig die orthostere und die allostere Bindungsstelle zu besetzen. Die pharmakologische Testung der synthetisierten Verbindungen erfolgte durch Radioligandbindungsstudien. Der allostere Effekt der Testsubstanzen wurde indirekt über die Verzögerung der Dissoziation des radioaktiv markierten orthosteren Antagonisten [3H]N-Methylscopolamin bestimmt. Alle bisquartären Testverbindungen weisen deutlich höhere Affinitätswerte als die Leitstruktur W84 auf. Die 1,8-Naphthalimid-substituierten Verbindungen mit gleichzeitiger zweifacher Methylierung erwiesen sich als hochaffin und zugleich positiv kooperativ. Die wirksamste Verbindung dieser Serie ist Verbindung 3a (Naphmethonium), deren Affinität zum NMS-besetzten Rezeptor im einstelligen nanomolaren Bereich liegt (pEC50 = 8.36). Somit stellt Naphmethonium den potentesten in der Literatur bekannten allosteren Modulator des M2 Rezeptors dar. Mittels QSAR-Analysen wurden die ermittelten Affinitäten zum freien und zum NMS-besetzten Rezeptor in Zusammenhang mit verschiedenen physikochemischen Parametern gebracht. Die Affinität zum NMS-besetzten Rezeptor der Verbindungen der Serie 2 lässt sich mit hoher Güte durch das Volumen eines lateralen N-Methylimids in Kombination mit der benachbarten Dimethylierung der Propylkette beschreiben. Somit wird deutlich, dass zur Erzielung von positiver Kooperativität die Kombination aus einem hochaffinen aromatischen Imid in direkter Nachbarschaft zu einer 2,2-Alkylpropylkette essentiell ist. / The present work deals with the synthesis and characterization of allosteric modulators of muscarinic receptors. Allosteric modulators bind to a topographically different site than classical orthosteric ligands and, thus, are capable of influencing both the dissociation and the association of orthosteric agonists and antagonists. Allosteric modulators are capable of binding selectively to specific subtypes. The bis(ammonio)alkane-type compound W84 served as a lead for the compounds synthesized in this work. Via pathway A, phthalic- and naphthalic anhydride derivatives were converted with N,N-dimethylpropane-1,3-diamines to the phthalimidopropylamine derivatives. The symmetrical W84-derivatives were obtained by the conversion of two equivalents of the amine with one equivalent 1,6 dibromohexane. To obtain the non-symmetrical W84-derivatives the phthalimidopropylamines were unilaterally alkylated by 1,6-dibromohexane. In the last step equimolar amounts of the monoalkylated compound and a phthalimidopropylamine were connected. During our studies the methylation of position 2 of the propylene chains was identified as critical position for the influence on equilibrium binding. Therefore, compounds with varying alkyl substituents were synthesized. First, starting from malonic diethyl ester, 1,3-dibromo-propane derivatives carrying one or two ethyl-, propyl- or iso-butyl groups, respectively, were synthesized first. The latter were converted to the corresponding 3-bromopropylphthalimid derivatives with potassium phthalimide. In the last step two equivalents of the bromopropyl-phthalimides reacted with one equivalent tetramethyl-1,6-hexane-diamine to the symmetrical hexamethonio-derivatives. A further aim of the work was to synthesize highly fluorescent W84-derivatives. The fluorescent properties of N-substituted naphthalimides could be utilized for the direct characterization of allosteric interactions. Therefore, amino groups were introduced in positions 3 and 4 of the naphthalimide moiety. Until now, only the binding of antagonists of the M2 receptor was influenced by hexamethonio derivatives. Because of the spatial proximity of the orthosteric to the allosteric binding site it was tried to combine an agonist and an allosteric modulator in one molecule. Twelve hybride molecules consisting of a part of a highly affin allosteric modulator and of derivatives of the muscarinic agonist oxotremorine-M were synthesized. In the pharmacological evaluation it will be elucidated if it is possible for an agonist/alloster-hybride molecule to bind simultaneously to the orthosteric and the allosteric site. The pharmacological testing of the compounds was accomplished by radioligand binding studies . The allosteric effect of the compounds was determined by measurement of the inhibition of the dissociation of the radioactive marked orthosteric antagonist [3H]N-methylscopolamine. All compounds revealed higher affinitiy values than the lead structure W84. The most potent compound of that series is compound 3a (naphmethonium) that reveals an affinity to the NMS-occupied receptor in the low nanomolar range (pEC50 = 8.36). Taking all results together, the highest affinity values in combination with positive cooperativity were obtained for W84-derivatives carrying at least one naphthalimide moiety directly connected to a 2,2-dimethylpropyl chain. By the introduction of different alkyl groups in the propylene chains it was possible to verify the critical position with respect to the cooperative behaviour of W84-derivatives. QSAR-studies were performed in order to check whether the pharmacologically determined affinities to the free and to the NMS-occupied receptor can be explained by physicochemical properties of the compounds. The affinity to the NMS-occupied receptor of the compounds of series 2 can be described using the volume of one lateral N-methylimide in combination with the dimethylation of the neighbored propylene chain. Summarizing these results it can be concluded that the compounds feature a dominant side with regard to allosteric potency. To achieve positive cooperativity the combination of an affinity generating lateral aromatic imide moiety connected to a 2,2-alkylated propylene chain is essential.
6

Synthese und Charakterisierung allosterer Modulatoren muscarinischer M2-Rezeptoren Strukturvariationen der Bis(ammonium)alkan-Verbindung W84 /

Muth, Mathias. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Würzburg.
7

Etablierung eines Zwei-Hybrid-Screening-Systems zur Suche und Charakterisierung von Ras-Raf-Effektoren

Friese, Anke. January 2002 (has links)
Frankfurt (Main), Univ., Diss., 2002.
8

Wirkmechanismen von Glukokortikoiden im Mausmodell der EAE – Einfluss auf Effektor- und Bystander-T-Zellen und Relevanz der T-Zell-Apoptose / Mechanisms of action of glucocorticoids in the mouse model of EAE - effect on effector and bystander T-cells and relevance of T-cell apoptosis

Müller, Lisa 16 November 2015 (has links)
In der vorliegenden Arbeit wurden die grundlegenden Mechanismen der Glukokortikoidtherapie bei der MS anhand des Tiermodells der MS, der EAE, untersucht. Hierzu wurde die EAE aktiv mithil-fe von MOG35-55 in C57Bl/6-Mäusen sowie GRdim- und lckGRdim-Mäusen induziert.  Zum einen sollte die Wirkung von Dexamethason auf Bystander- und Effektor-T-Zellen gesondert voneinander betrachtet werden. Hierzu sollte zunächst ein Modell etabliert werden, bei dem die GCs nur auf die Bystander- beziehungsweise nur auf die Effektor-T-Zellen wirkten. Trotz zahlrei-cher Experimente konnte kein Modell etabliert werden, dass den Ansprüchen für die Beantwor-tung der Frage genügte.  Zum anderen wurde in dieser Arbeit gezeigt, dass lckGRdim-Mäuse trotz fehlender Dimerisierungs-fähigkeit des GRs und somit fehlender Apoptose-Induktion in T-Zellen auf die GC-Therapie ebenso gut ansprachen wie Kontrolltiere. Ebenso konnte dies bei reinen GRdim-Tieren beobachtet werden. Zunächst wurde mithilfe von Zellzählungen, FACS-Analysen nach Anfärben der Splenozyten mit AxV und einem Apoptose-Assay ausgeschlossen, dass es in den Tieren mit dem veränderten GR doch zu einer Induktion von Apoptose kam. So konnte bestätigt werden, dass Apoptose nicht es-sentiell für die Therapie der EAE ist. Anhand eines Proliferations-Assays konnte ebenso ausgeschlossen werden, dass GCs unspezifisch die gesamte Funktionalität der Zellen beeinflussen. Im Folgenden wurden weitere mögliche Me-chanismen der Wirkung von GCs in der EAE untersucht.  Anhand von FACS-Analysen und qPCR sowie histologischen Untersuchungen konnte gezeigt wer-den, dass die eingeschränkte Migration der Zellen in das RM nach Dex-Gabe eine wichtige Rolle zu spielen scheint. So sahen wir eine Herunterregulierung von Adhäsionsmolekülen sowie die ver-minderte Expression von einigen Zytokinen. Im Falle der Chemokine, die jedoch nur als Neben-schauplatz in dieser Arbeit betrachtet werden, konnte keine Herunterregulierung von RANTES in GRdim-Tieren beobachtet werden. Andere Publikationen geben jedoch Hinweise darauf, dass auch die Beeinflussung der Chemokine entscheidend am Mechanismus der GC-Therapie beteiligt ist.   Zusammenfassend konnte mit dieser Arbeit gezeigt werden, dass Transaktivierungsprozesse, im Speziellen die Induktion von Apoptose, keinen entscheidenden therapeutischen Effekt von Dex darstellen. Der tatsächliche Mechanismus konnte auch im Rahmen dieser Arbeit nicht geklärt wer-den. Durch die Versuche an GRdim-Tieren gibt es jedoch entscheidende Hinweise darauf, dass vor allem repressive Effekte als Wirkungsmechanismus der Kortisontherapie entscheidend sind. Hierzu zählen zum Beispiel die verminderte Expression von Adhäsionsmoleküle sowie die verminderte Ausschüttung von Zytokinen bzw. Sekretion von Chemokinen. Zusammengenommen also Prozes-se, die die Migration von T-Zellen ins ZNS beeinflussen und steuern.  Dieser Aspekt hat eine große Bedeutung für die Therapie der MS, da gerade die Gene, die durch Transaktivierung induziert werden, zu den unerwünschten Nebenwirkungen der Therapie führen. Da diese keine Bedeutung in der Wirksamkeit der GC-Therapie zu haben scheinen, könnten Medi-kamente entwickelt werden, die selektiv die Gene, die durch Transrepression aktiviert werden, ansteuern. Dies würde ein großes Benefit für MS-Patienten nach sich ziehen, die im Rahmen der notwendigen Therapie ihrer Erkrankung mit teilweise gravierenden Nebenwirkungen zu kämpfen haben.
9

Untersuchungen zur Proteinsekretion in Bradyrhizobium japonicum unter besonderer Berücksichtigung des Typ III- Sekretionssystems und Charakterisierung der „metal ion-inducible autocleavage“ Effektordomäne

Zehner, Susanne 09 September 2020 (has links)
Im Mittelpunkt dieser Arbeit steht die Untersuchung des Typ III-Sekretionssystem (T3SS) bei Bradyrhizobium japonicum USDA110. Im ersten Teil der Arbeit wird die Regulation der Gene des Typ III-Sekretionssystems in B. japonicum beschrieben. Dabei wurde die tts-Box, als neuartige Promotorsequenz für die Gene des T3SS und sekretierter Proteine charakterisiert. Mittels Expressionsanalysen konnte die Aktivität von 34 Genregionen downstream der tts-Boxen in Abhängigkeit von Flavonoiden gezeigt werden. Auch in Symbiose, in frühen Infektionsstadien und in reifen Knöllchen von verschiedenen Wirtspflanzen wurde die Expression ausgewählter Gene nachgewiesen. Der zweite Teil der Arbeit widmet sich der Analyse der sekretierten Proteine von B. japonicum. Über 100 Proteine wurden im Überstand von Kulturen nachgewiesen, wovon 68 Proteine durch Massenspektrometrie identifiziert werden konnten. Zusätzlich wurden 12 Proteine identifiziert, die in Abhängigkeit des T3SS sekretiert werden. Im dritten Teil der Arbeit wurden die sekretierten Proteine NopE1 und NopE2 näher untersucht und als bona-fide Effektoren nachgewiesen. Die rekombinant produzierten Effektoren NopE1 und NopE2 wurden biochemisch charakterisiert. Für die Domäne unbekannter Funktion (DUF1521) wurde eine spezifische Selbstspaltungsaktivität in Gegenwart von Calcium gezeigt. Nachweislich ist diese Aktivität relevant für die Symbiose. Somit konnte der Proteindomäne mit bisher unbekannter Funktion eine biochemische Funktion zugeordnet werden. Im letzten Teil der Arbeit wurden die Untersuchungen an dieser Domäne auf weitere Proteine ausgedehnt. Für das putative Effektorprotein VIC_001052 aus V. coralliilyticus, dem Verursacher der Korallenbleiche bei Pocilla damicornis, wurde ebenfalls die in vitro Calcium-induzierte Selbstspaltungsaktivität gezeigt. Aufgrund der konservierten Selbstspaltungsfunktion wurde die DUF1521-Domäne in metal-ion inducible autocleavage- (MIIA)- Domäne umbenannt.:I. Einleitung Rhizobien-Leguminosen-Interaktion Proteinsekretionssysteme II. Zusammenfassung der Forschungsergebnisse 1. Untersuchung der Expression des Typ III-Sekretionssystems in Knöllchen und Analyse des tts-Box-Promotors 2. Identifizierung sekretierter Proteine von Bradyrhizobium japonicum 3. Untersuchung der sekretierten Proteine NopE1 und NopE2 4. Untersuchung von konservierten MIIA-Domänen III. Diskussion IV. Zusammenfassung V. Literaturverzeichnis VI. Anhang VII. Publikationen
10

Analysis of Type Three System transport mechanism in gram-negative bacteria

Dohlich, Kim-Stephanie 24 February 2014 (has links)
Das Typ III Sekretionssystem (T3SS) ist ein Proteinkomplex den Gramnegative Bakterien nutzen um in einem Schritt Effektorproteine (Effektoren) aus dem Zytosol über die Doppelmembran zu sekretieren. Für viele Bakterien ist das T3SS ein essenzieller Virulenzfaktor, der es ihnen erlaubt mit ihrem Wirt zu interagieren und diesen zu manipulieren. Charakteristisch für das T3SS ist die strukturelle Komponente, der Nadelkomplex. Dieser ähnelt strukturell einer Spritze, deren Basalkörper die bakteriellen Membranen und das Periplasma durchspannt und einer Nadel, die vom Basalkörper aus dem Bakterium ragt. Basierend auf dem Modell einer Spritze wird angenommen, dass Effektoren entfaltet und anschließend durch Basalkörper und Nadelkanal sekretiert werden. Trotz der kontinuierlichen Forschung an T3SS entbehrt dieses Modell einer experimentellen Grundlage und der Mechanismus ist nicht vollständig erklärt. Ziel der Arbeit war es, eine experimentelle Basis für den Sekretionsmechanismus des T3SS zu schaffen. Um zu verstehen, wie das T3SS Effektoren sekretiert, wurden zunächst Fusionsproteine konstruiert, welche aus einem Effektor und einem stabil gefalteten Knotenprotein bestehen. Aufgrund des Knotens in der Fusion ist davon auszugehen, dass dieser während der Sekretion nicht entfalten kann. Die Effektordomäne wird sekretiert während der Knoten im Kanal verbleibt und diesen verstopft. Nach unseremWissen ist diese Arbeit die erste Visualisierung von Effektorfusionen an isolierten Nadelkomplexen. Die Effektorfusion wird N-terminal voran durch den Kanal sekretiert, wobei der Kanal das Substrat umschließt und gegen Proteasen und chemische Modifikationen abschirmt. Die Ergebnisse dieser Arbeit untermauern eine Grundidee der Funktionsweise des T3SS und liefern eine vielversprechende Strategie für in situ-Strukturanalysen. Dieser Ansatz lässt sich auch auf andere Proteinsekretionssysteme übertragen, bei welchen Substrate vor dem Transport entfaltet werden müssen. / The Type III Secretion System (T3SS) is a complex used by Gram-negative bacteria to secrete effector proteins from the cytoplasm across the bacterial envelope in a single step. For many pathogens, the T3SS is an essential virulence factor that enables the bacteria to interact with and manipulate their respective host. A characteristic structural feature of the T3SS is the needle complex (NC). The NC resembles a syringe with a basal body spanning both bacterial membranes and a long needle-like structure that protrudes from the bacterium. Based on the paradigm of a syringe-like mechanism, it is generally assumed that effectors are unfolded and secreted from the bacterial cytoplasm through the basal body and needle channel. Despite extensive research on T3SS, this hypothesis lacks experimental evidence and the mechanism of secretion is not fully understood. This work aimed to provide an experimental basis for the model of the T3SS mechanism. In order to elucidate details of the effector secretion mechanism, fusion proteins consisting of an effector and a bulky protein containing a knotted motif were generated. It is assumed that the knot cannot be unfolded during secretion of the chimera. Consequently, these fusions are accepted as T3SS substrates but remain inside the NC channel and obstruct the T3SS. This is, to our best knowledge, the first time effector fusions have been visualized together with isolated NCs and it demonstrates that effector proteins are secreted directly through the channel with their N-terminus first. The channel encloses the substrate and shields it from a protease and chemical modifications. These results corroborate an elementary understanding of how the T3SS works and provide a powerful tool for in situ-structural investigations. This approach might also be applicable to other protein secretion systems that require unfolding of their substrates prior to secretion.

Page generated in 0.0573 seconds