• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 50
  • 16
  • 11
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 178
  • 178
  • 113
  • 45
  • 44
  • 41
  • 23
  • 22
  • 20
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Monitorování infiltrace simulovaných splachových vod metodou EIS v laboratorních podmínkách / Monitoring of infiltration simulated flushing water EIS method in laboratory conditions

Sedláková, Alena January 2015 (has links)
This thesis deals with the application of the electrical impedance spectrometry (EIS) method and the implemented Z-meter III device, Z-meter IV device respectively, while observing the infiltration of simulated flushing water with the aim of assessing the possibility or the appropriateness of its use. The experiment was carried out in the Laboratory of Water Management Research.
62

Avaliação do comportamento do ângulo de fase e da dinamometria manual em pacientes submetidos à cirurgia cardíaca : estudo de coorte prospectivo / Performance evaluation of phase angle and handgrip strength in patients undergoing cardiac surgery: a prospective cohort study

Silva, Taís Kereski da January 2016 (has links)
Introdução: O ângulo de fase (AF), derivado da análise de bioimpedância elétrica (BIA), tem sido interpretado como indicador de integridade da membrana celular; e a dinamometria manual têm sido usados como indicadores de prognóstico em algumas situações clínicas. Objetivos: avaliar o comportamento do AF e da dinamometria manual em pacientes submetidos à cirurgia cardíaca e associá-los com EuroSCORE e desfechos clínicos. Métodos: Estudo de coorte prospectivo com 50 pacientes submetidos à cirurgia cardíaca, com idade ≥18 anos, entre janeiro de 2015 e outubro de 2015. O AF e a dinamometria manual foram aferidos em três momentos: pré-operatório, pré-alta hospitalar e três meses após à cirurgia. Também foram coletadas as seguintes variáveis: tempo de circulação extracorpórea (CEC), isquemia, ventilação mecânica (VM), tempo de internação na Unidade de Terapia Intensiva (UTI) e tempo de internação hospitalar após à cirurgia e foi calculado o EuroSCORE. Resultados: Os pacientes foram de predominância do sexo masculino 32 (64%) com idade média de 62,8 ± 10,2 anos, tempo de estadia na UTI de 3 dias (2 – 23), tempo de internação pré-operatória de 7 (5 – 61) dias e EuroSCORE 4 (0 – 10) dias. Houve redução do AF, com diferença entre o período pré-operatório e os dois momentos de avaliação no pós-operatório (p<0,001). Quando a dinamometria manual foi avaliada ao longo do tempo foi observada uma redução entre o préoperatório e a pré-alta hospitalar (p<0,001) e recuperação dessa nos três meses após à cirurgia (p<0,001). A VM e o EuroSCORE tiveram correlação inversa com o AF e a dinamometria manual nos três momentos. A correlação do AF no período pré-operatório do EuroScore p=0,007 e o segundo e o terceiro momento p<0,001, e para os três momentos da VM (p<0,001), respectivamente. Já a correlação da dinamometria manual no primeiro e no segundo momento com o EuroSCORE e a VM p <0,001 e no terceiro momento p=0,010 e p=0,018, respectivamente. Conclusões: O AF e a dinamometria manual parecem estar associados ao tempo de VM, tempo de internação na UTI e tempo de internação no pós-operatório em pacientes submetidos à cirurgia cardíaca. / Background and aims: The phase angle (PA), derived from bioelectrical impedance analysis (BIA), have been interpreted as cell membrane integrity indicator; and the handgrip strength (HGS) have been used as prognostic indicators in some clinical situations. This study aims to evaluate the PA and HGS behavior in patients undergoing cardiac surgery and associate these with clinical outcomes and prognostic. Methods: Cohort prospective study of consecutive recruited patients undergoing cardiac surgery aged ≥18 years. The PA and HGS were measured at three set points: preoperatively, hospital predischarge and three months after surgery. Were also collected: time of cardiopulmonary bypass (CPB), ischemia, mechanical ventilation (MV), length of stay (LOS) in Intensive Care Unit (ICU) and LOS after surgery and calculated the EuroSCORE. Results: A decrease in PA was observed between the preoperative and the two postoperative stages (p<0.001). When the HGS was evaluated over time was seen a reduction between preoperative and predischarge (p<0.001) and a recovery in three months after surgery (p<0.001). The MV and EuroSCORE had an inverse association with PA and HGS in three stages. PA correlation in the first stage of the EuroSCORE p=0.007 and the second and third stage p<0.001, and for the three stages of MV (p<0.001), respectively. In HGS correlation in the first and second stage of the EuroSCORE and MV p<0,001 and in the third stage p=0.010 and p=0.018, respectively. Conclusion: PA and HGS appears to be related to MV time, LOS in ICU and LOS after surgery in patients undergoing cardiac surgery.
63

Anisotropy in Diffusion and Electrical Conductivity Distributions of TX-151 Phantoms

January 2015 (has links)
abstract: Among electrical properties of living tissues, the differentiation of tissues or organs provided by electrical conductivity is superior. The pathological condition of living tissues is inferred from the spatial distribution of conductivity. Magnetic Resonance Electrical Impedance Tomography (MREIT) is a relatively new non-invasive conductivity imaging technique. The majority of conductivity reconstruction algorithms are suitable for isotropic conductivity distributions. However, tissues such as cardiac muscle and white matter in the brain are highly anisotropic. Until recently, the conductivity distributions of anisotropic samples were solved using isotropic conductivity reconstruction algorithms. First and second spatial derivatives of conductivity (∇σ and ∇2σ ) are integrated to obtain the conductivity distribution. Existing algorithms estimate a scalar conductivity instead of a tensor in anisotropic samples. Accurate determination of the spatial distribution of a conductivity tensor in an anisotropic sample necessitates the development of anisotropic conductivity tensor image reconstruction techniques. Therefore, experimental studies investigating the effect of ∇2σ on degree of anisotropy is necessary. The purpose of the thesis is to compare the influence of ∇2σ on the degree of anisotropy under two different orthogonal current injection pairs. The anisotropic property of tissues such as white matter is investigated by constructing stable TX-151 gel layer phantoms with varying degrees of anisotropy. MREIT and Diffusion Magnetic Resonance Imaging (DWI) experiments were conducted to probe the conductivity and diffusion properties of phantoms. MREIT involved current injection synchronized to a spin-echo pulse sequence. Similarities and differences in the divergence of the vector field of ∇σ (∇2σ) among anisotropic samples subjected to two different current injection pairs were studied. DWI of anisotropic phantoms involved the application of diffusion-weighted magnetic field gradients with a spin-echo pulse sequence. Eigenvalues and eigenvectors of diffusion tensors were compared to characterize diffusion properties of anisotropic phantoms. The orientation of current injection electrode pair and degree of anisotropy influence the spatial distribution of ∇2σ. Anisotropy in conductivity is preserved in ∇2σ subjected to non-symmetric electric fields. Non-symmetry in electric field is observed in current injections parallel and perpendicular to the orientation of gel layers. The principal eigenvalue and eigenvector in the phantom with maximum anisotropy display diffusion anisotropy. / Dissertation/Thesis / Masters Thesis Bioengineering 2015
64

Functional imaging of the human brain using electrical impedance tomography

Ouypornkochagorn, Taweechai January 2016 (has links)
Electrical Impedance Tomography (EIT) is a technique for imaging the spatial distribution of conductivity inside a body using the boundary voltages, in response to applied current patterns, to reconstruct an image. Even though EIT has been proved useful in several medical applications such as mechanical respiration and ventilation monitoring of the lungs, its reported success in localising cerebral conductivity changes due to brain stimulation is very scant. In the case of the human head, the amplitude of the brain response to stimulation is usually very small and gets contaminated with physiological noise initiated from inside the cranium or the scalp. Three types of evoked responses were experimentally investigated: auditory startle response (ASR), CO2 reactivity response, and transient hyperaemic response (THR). ASR is expected to be a result of the brain’s functioning processes. However, the responses to CO2 and THR are expected to be due to cerebral blood volume or flow, due to physiological intervention in blood supply. According to the results, even when the amplitude of EIT measurements shows profound variation as in the case of CO2 reactivation, those could not be physiologically linked to the targeted responses and have been shown to be initiated from the scalp. The consistency of the measurements in the case of CO2 reactivation response was poor (37.50-50%). Meanwhile in the case of THR, although the magnitude of conductivity changes was overall 50% smaller than the previous cases, the subject movement was not necessary. This could be a reason that the consistency of THR case was very good (87%), and this can emphasize the necessity to maintain the changes in the scalp at minimum levels. In the case of ASR the response magnitude was very small (six times smaller than the CO2 reactivity case), and the evoked response can be detected with only 50% consistency. To measure very small EIT signals (such as those expected due to brain function) effectively, one must improve the sensitivity of the measurements to conductivity changes by increasing the excitation current. The functional EIT for Evoked Response (fEITER) system used in our investigations was modified from its initial configuration to increase its excitation current from 1 mApk-pk to 2 mApk-pk or 1 mArms. The bit-truncation in the process of Phase-Sensitive Detection (PSD) has also been improved, to modify the original 16-bit data readout to be 24-bit data readout. These improvements have doubled the instrument’s sensitivity, and have substantially reduced the truncation error to about 183 times. The quality of the physiological waveform was also significantly improved. Therefore, one could study more effectively very fast brain response using the modified system. For example, the latency of responses can be more precisely extracted, or the monitoring of the conductivity change in a period of only a few tens of milliseconds is then possible. The reconstruction of brain images corresponding to these physiologically evoked responses has been the ultimate goal of this thesis. To ensure obtaining the correct images, some crucial issues regarding EIT reconstruction were firstly investigated. One of these issues concerns the modelling error of the numerical head models. The reconstruction requires an accurate model capturing the geometry of the subject’s head with electrodes attached and accurate in-vivo tissue conductivities. However, since it is usually impractical to have a personalised model for each subject, many different head models (including a subject model) were constructed and investigated, to evaluate the possibility of using a generic model for all subjects. The electrode geometry was also carefully included into the models to minimise error. Another issue concerns the appropriate reconstruction algorithm. A novel nonlinear reconstruction method, based on the difference imaging approach and Generalized Minimal Residual method (GMRes) algorithm, with optimal parameters and prior information, was proposed to deal with significant modelling errors. With this algorithm, the experimental results showed that it is possible to use a generic model for reconstructing an impedance change, but the magnitude of the change should be rather small. The last issue tackled was regarding the a priori choice of model parameters, and in particular the tissue conductivities. The tissue conductivities of the scalp and the skull were also estimated by a proposed methodology based on the Gauss-Newton method. The estimation showed that, compared to previous reported values, the conductivity of the scalp was higher, at 0.58 S/m, and that of the skull lower, at 0.008 S/m. Eventually, by exploiting the hardware and firmware advances in the measuring instrument in conjunction with the proposed modelling and reconstruction algorithm, processing our experimental EIT data captured on human heads and a head-like tank confirm that the localisation and imaging of conductivity changes occurring within the head is indeed possible. From the low quality measurements in the case of the CO2 reactivity response, the reconstructed images of this response do not reflect the true conductivity change. The consistency of the images to localise the sources of the changes was very poor (0-50%), i.e. the conductivity changing locations in the images were likely to be random. Our analysis suggests that the changes inside the cranium are likely to be due to the large change in the scalp. In the case of THR, the reconstructed images were able to localise the response in a similar manner to what had been found on the measurements, and the consistency was quite high (76%). Meanwhile, in the case of ASR, surprisingly the consistency of the images was 82%, much higher than the consistency of the measurements, which was only 50%. This was because the changing amplitude of the measurements was too small to be noticed by visualisation, and it was practically cumbersome to investigate all measurements. This statistic confirms that image reconstruction can reveal information that is not directly apparent by observing the measurements. In summary, EIT can be used in brain (function) imaging applications to some extent. The targeted response, which typically originates from inside the cranium is always infused with neurophysiological noise or physical noise at the scalp, and the amplitude of noise determines the possibility to localise the changes. It is also necessary for the desired response to have sufficiently large amplitude. These results show that EIT has been successful in THR and ASR, but for CO2 reactivity response, EIT lacks the necessary sensitivity.
65

Procedimento de medida de condutividade in vivo para desenvolver um atlas anatômico de tomografia por impedância elétrica. / Procedure for measurement of conductivity in vivo for develop an anatomic atlas for electric impedance tomography.

Sara Rodriguez 07 June 2010 (has links)
Este trabalho apresenta um procedimento para medir a condutividade de tecidos biológicos do tórax de suínos in vivo. Este procedimento permitirá um aumento da resolução em imagens de TIE, por descrever a probabilidade de ocorrência deste tipo de imagens em uma população. A TIE é uma técnica, recentemente desenvolvida, de obtenção de imagens médicas e de monitoração de tecidos biológicos. Dados os potenciais elétricos medidos no contorno e as correntes injetadas num corpo, esta técnica estima a distribuição de condutividade em seu interior. Os dados experimentais de condutividade em tecidos de tórax de suínos são utilizados para compor um atlas anatômico, que é utilizado como uma regularização do problema inverso da TIE. Tecidos biológicos conduzem eletricidade e suas propriedades elétricas como condutividade e permitividade podem sofrer alterações em função do estado fisiológico. Determinados estados do tecido biológico estão associados a variações de estrutura física ou de composição iônica e podem estar acompanhados de mudanças nas propriedades elétricas passivas. Estas mudanças de propriedades elétricas podem constituir imagens médicas funcionais. Os animais utilizados para a realização dos ensaios têm peso entre 25 e 30 kg. As medições serão realizadas utilizando-se um analisador de impedância e um condutivímetro experimental com 125 kHz de frequência. / This paper presents a procedure for measuring conductivity in biological tissues of swine chests in vivo. This will allow an increase of resolution in images of EIT, describing the probability of occurrence in such images in a population sample. The EIT is a recently developed technique for obtaining medical images and monitoring biological tissues. Given the measured electrical potentials in a body boundary and current injected inside it, this technique estimates the distribution of conductivity inside such body. The experimental conductivity data in tissues of swine chests are used to compose an anatomical atlas, used as a regularization of EIT inverse problem. Biological tissues are conductive and their electrical properties, like conductivity and permittivity, may change depending on the physiological state. Certain biological tissue states are associated with changes in physical structure or ionic composition and may be dependent by changes in tissues passive electrical properties. These changes in electrical properties can be functional medical images. The animals used for the experiments have weight between 25 and 30 kg. These measurements are performed using an impedance analyzer and an experimental conductivimeter with 125 kHz of frequency.
66

Investigação de sistemas e processos biológicos pela técnica de espectroscopia de impedância elétrica

LIMA, Sandro Vagner de 08 October 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-06-27T12:24:48Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese _Sandro Vagner de Lima.pdf: 6041788 bytes, checksum: 30432ac952cb4559dfe9e27b22cd9bf5 (MD5) / Made available in DSpace on 2016-06-27T12:24:49Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese _Sandro Vagner de Lima.pdf: 6041788 bytes, checksum: 30432ac952cb4559dfe9e27b22cd9bf5 (MD5) Previous issue date: 2015-10-08 / Esta tese de doutorado foi dedicada à investigação do modo como a técnica de espectroscopia de impedância elétrica (EIE) poderia ser usada para acompanhar os processos de mudanças conformacionais de macromoléculas biológicas, como proteínas e DNA. Para isso, usamos como sistemas modelos a proteína albumina do soro bovino (BSA), e a formação do complexo polianilina/DNA (PANI/DNA). Com a caracterização de soluções de DNA e BSA por EIE e sua modelagem elétrica convenientemente descrita pelo circuito de Randles (e sua variante), foram determinados os parâmetros relevantes para descrição dos fenômenos de desnaturação e de agregação da proteína e da precipitação do complexo PANI/DNA. As informações obtidas sobre a solubilidade desses últimos complexos são de grande utilidade para o entendimento dos mecanismos de interação entre cadeias de DNA e de polímeros condutores. Do mesmo ponto de vista da EIE, as sucessivas mudanças da conformação da proteína e os detalhes da cinética de sua agregação na interação com surfactantes foram adequadamente correlacionados com a característica elétrica do circuito de Randles das soluções correspondentes. Finalmente, estudos iniciais foram estendidos para a análise dos processos de fibrilação de proteínas. Para todos os problemas abordados, o uso da resistência de transferência de carga elétrica (RCT) (um parâmetro do circuito de Randles) nos permite sugerir ser a técnica de EIE apropriada para caracterizar as diferentes mudanças conformacionais envolvidas em fenômenos que resultam da interação de biomoléculas com moléculas de prova. Assim, ela se confirma como um método competitivo quando comparado ao uso da fluorescência e da absorção UV-Vis (técnicas rotineiramente adotadas para a análise desses problemas). / This doctoral thesis was devoted to the investigation of the technique of electrical impedance spectroscopy as an alternative method to assess conformational changes of biological macromolecules, such as proteins and DNA. For this, we used protein bovine serum albumin (BSA), and the formation of polyaniline (PANI)/DNA complexes as model systems. With the characterization of DNA and BSA solutions by Electrical Impedance Spectroscopy (EIS) and their electrical modeling conveniently described by the Randles circuit (and its variant), we determined the relevant characteristics of phenomena such as the denaturation and aggregation of proteins (BSA), and polymer/DNA complex formation (PANI/DNA). As a result of this approach we identified the existence of different interaction regimes between the chains of polyaniline and DNA molecules that are dependent on the concentration of PANI/DNA and the existence of equilibrium conditions which separate regions of precipitation/stability the PANI/DNA complex. Also from this point of view, the modes of interaction BSA / surfactants involved in the conformation changes well as typical stages associated with fibrillation kinetics were adequately correlated with the electric characteristic of the Randles circuit. In all studies carry out in this thesis, the analysis of the electric charge transfer resistance behavior (RCT) (a parameter of the Randles circuit) when confronted with the results obtained by standard techniques showed that the EIS presents reliable and some comparative advantages. These results allow us to provide an adequate and competitive alternative to conventional methods such as UV-Visible absorption, fluorescence and the use of probe molecules
67

Detecção da contração muscular através da tomografia de impedância elétrica. / Muscle contraction detection using electrical impedance tomograph

Olavo Luppi Silva 27 September 2012 (has links)
Atualmente existem diversos métodos e equipamentos disponíveis no mercado para análise da biomecânica do movimento humano. No entanto, mesmo uma equipe multidisciplinar, dispondo de um laboratório completo de análise do movimento, pode falhar na identificação de quais grupos musculares estão sendo recrutados durante um exercício. Sobretudo quando a musculatura de interesse é profunda. O objetivo desta tese é propor formas de detectar a contração muscular através da Tomografia por Impedância Elétrica (TIE). Um modelo de elementos finitos de condução elétrica é utilizado para resolver o problema inverso através do algoritmo de Newton-Raphson de forma a obter as imagens de TIE. Um novo modelo de eletrodo e o método de erro de discretização da malha são introduzidos como forma de melhorar as imagens de TIE. Além disso, a variabilidade da impeditividade de tecidos musculo-esqueléticos é medida experimentalmente, in vivo tanto em repouso quanto em exercício. Os resultados mostram que o sangue tem um papel importante nas mudanças de impeditividade e que as variações medidas durante as contrações musculares parecem estar relacionadas à taxa de contração do movimento. As imagens de TIE, obtidas in vivo de um voluntário, apresentam um aumento de resistividade durante a contração muscular. / Presently, there are several methods and equipment available in the market for the biomechanical analysis of human movement. However, even a well trained multidisciplinary team, equipped with a complete motion analysis laboratory, may fail to identify which muscle groups are being recruited during an exercise. Specially when deep muscles are being considered. The main objective of this work is to propose forms to detect muscle contraction from Electrical Impedance Tomography (EIT) images. A finite element electrical conduction model is used to solve an inverse problem with Newton-Raphson algorithm in order to produce EIT images. A new electrode model is proposed and the mesh discretization error method is implemented to improve EIT images. Additionally the variability of impeditivity of musculo-skeletal tissues is measured experimentally in vivo both at rest and during exercise. The results show that blood has an important role in muscle impeditivity changes and that resistivity variations during muscle contractions seem to be related to movement contraction rate. The EIT images, obtained in vivo from a volunteer, show an increase of resistivity during muscle contraction.
68

Développement d'une peau artificielle pour l'apprentissage d'interactions physiques et sociales sur un robot humanoïde / Development of an artificial skin for learning physical and social interactions of a humanoid robot

Pugach, Ganna 15 September 2017 (has links)
Le toucher est considéré comme l’un des sens primordiaux à modéliser chez un robot afin de lui permettre de générer des comportements plus souples et plus agiles comme attraper un objet, toucher (ou être touché par) une personne. Même si les capteurs tactiles actuels sont encore très limités en comparaison à la peau humaine, combinés à la vision et à la proprioception, le développement de nouveaux capteurs proches de la peau humaine pourrait démultiplier les capacités d’interactions d’un robot afin d’interagir directement avec une personne en toute sécurité et de partager avec lui son environnement physique et social. A la différence de la peau humaine, les principaux capteurs tactiles utilisés en robotique actuellement ne sont capables de détecter des variations de pression et de poids que sur de petites surfaces uniquement. De plus, ceux-ci sont souvent très rigides et n’ont pas les propriétés élastiques de déformation de la peau humaine. Les travaux de cette thèse se basent sur le développement d’une interface tactile proche d’une "peau artificielle" en terme de surface de recouvrement (qui peuvent atteindre plusieurs dizaines de centimètres carrés) et de localisation des points de contact de quelques dizaines de millinewtons. Deux aspects principaux sont développés : (i) aspect d’ingénierie comprenant le développement d’un prototype de peau artificielle conçue pour un robot humanoïde afin de lui conférer une perception tactile, et (ii) aspect cognitifs qui s’appuient sur l’intégration de multiples rétroactions sensorielles (tactile, visuelle, proprioceptive) dans le but d’avoir un robot qui puisse interagir physiquement avec des personnes.Le prototype tactile développé est basé sur la reconstruction du champ électrique à la surface d’un matériau conducteur, suivant le principe de la Tomographie par Impédance Électrique (TIE). Notre innovation principale a été d’implémenter des techniques d’apprentissage par réseau de neurones artificiels afin de reconstruire l’information sans utiliser les techniques analytiques d’inversion de matrice coûteuse en temps de calcul. De plus, nous montrons que l’utilisation de réseaux de neurones artificiels permet d’avoir un système beaucoup plus biomimétique, indispensable pour comprendre la perception du toucher chez l’être humain.Nous avons ensuite abordé le problème de l’intégration des informations tactiles et motrices. Après avoir recouvert un bras manipulateur avec la peau artificielle, nous avons fait apprendre un réseau de neurones son schéma corporel et adapter sa compliance par retour tactile. Le fonctionnement du moteur est basé sur le contrôle par admittance du bras robotique. Des expériences montrent que les réseaux de neurones peuvent contrôler l’interaction adaptative entre le bras du robot avec une personne grâce à l’estimation du couple appris selon la position où la force tactile avait été appliquée lors de la phase d’apprentissage.Enfin, nous nous sommes intéressées à la problématique de la représentation du corps au niveau neuronal, comment les êtres humains perçoivent leur propre corps à travers tous les sens (visuel, tactile et proprioceptif). Nous avons proposé un modèle biologique au niveau du cortex pariétal qui s’appuie sur l’intégration de multiples rétroactions sensorielles du corps du robot (son bras) et sur la synchronisation des rétroactions visuelles et proprioceptives. Nos résultats montrent l’apprentissage d’une image corporelle et l’espace péri-personnel avec l’émergence de neurones qui codent une information spatiale visuo-tactile relative au déplacement du bras et centrée soit sur le bras robotique soit centrée sur l’objet. / The touch perception is considered as one of the crucial senses to be recreated in a robot so that it could generate a more flexible and agile behavior. For instance, grasping an object, as well as touch or be touched by a person. Although modern touch sensors are still very limited compared to the human skin, combined with vision and proprioception, the development of new sensors similar to human skin could multiply the robot’s capacity to interact directly and safely with a person, as well as to share his or her physical and social environment.Unlike human skin, the main touch sensors used in modern robotics are only capable of detecting the pressure and weight variations on small batches of surface. Moreover, they are often quite stiff and do not have the elastic deformation capacity intrinsic to the human skin. The purpose of this thesis is to develop a touch interface close to "artificial skin" in terms of the covered area (which can reach several square decimeters) and localization of the contact points (several dozen millinewtons). Two main aspects have been developed: (i) the engineering aspect including the development of an artificial skin prototype for a humanoid robot designed to impart a tactile perception, and (ii) the cognitive aspect that is based on the integration of multiple sensory feedbacks (tactile, visual, proprioceptive) in order to conceive a robot that can physically interact with people.The developed tactile prototype is based on the reconstruction of the electric field on the surface of a conductive material, following the principle of Electrical Impedance Tomography (EIT). Our main innovation was to implement the neural network learning techniques to reconstruct the information without using the inverse matrix analytical techniques which imply time consuming computation. Moreover, we show that the application of artificial neural networks allows to obtain a much more biomimetic system, essential to understand the perception of the human touch.Then, we addressed the issue of integrating tactile and motor information. After having covered a manipulator arm with artificial skin, we have learn a neural network its body schema and enables it to adjust its compliance with tactile feedback. The functioning of the motor is based on the admittance control of the robot arm. Experiments show that neural networks can control the adaptive interaction between the robot arm and a human being by estimating the torque perceived according to the position where the touch force had been applied during the learning phase.Finally, we turned our attention to the issue of the body representation at the neuronal level, namely, how human beings perceive their own body through all their senses (visual, tactile, and proprioceptive). We have proposed a biological model in the parietal cortex, which is based on the integration of multiple sensory feedbacks from the robot’s body (its arm) and on the synchronization of visual and proprioceptive feedback. Our results show the capacity to perceive the body image with the emergence of neurons that encode a spatial visual-tactile information of the arm movement and is centered on either the robotic arm or on the object.
69

Detekce vsakování vody do zemin injektovaných jíly metodou EIS / Detection of water infiltration into soils injected by clays using EIS method

Marek, Ondřej January 2020 (has links)
The diploma thesis deals with the study of water infiltration into soil samples with various types of clay. The soil matrix was represented by homogeneous sand; clay samples were supplied by LB Minerals, Ltd. Soil analysis with injected clays was focused on sealing ability of examined clays for possible use in construction practice for the construction of sealing objects. Electric impedance spectrometry (EIS) measuring system was used to monitor the infiltration process. The measurement was carried out by a measuring apparatus made by the solution of the international project E! 7614 of applied research in the EUREKA program within its sustainability.
70

Stanovení obsahu vody v zemině metodou EIS / Determination of water content in the soil by method EIS

Šandová, Iva January 2013 (has links)
This thesis deals with the measurement of water content in soil using electrical impedance spectrometry. The aim is to characterize and determine the conditions of applicability of this method and of measuring apparatus with device Z-meter III for instance for the application of the field measurements of earth dams.

Page generated in 0.1102 seconds