151 |
Design and Fabrication of RF-MEMS Switch with High Isolation CharacteristicChien, Wei-Hsun 03 September 2010 (has links)
In order to apply to S-Band (1-4.5 GHz) of wireless communication system, we designed and fabricated a high-insolating RF-MEMS switch by surface micromachining technology in this study.
In terms of the micro switch, we performed the structural design, high frequency simulation, components process integration and high-frequency measurement in this study. Especially for making components be high-isolation, low-loss and low-driving voltage, we proposed the following three methods: (i) adjusting the space and width of the transmission lines to improve the RF performance; (ii) applying the stress imbalance, by using dual metal composite top electrode, to form a arched contact electrode and reduce the drive voltage efficiently; (iii) using non-isometric spring structure to stabilize the electrode movement of the components. Besides, we did the optimizing simulation for this study, which were supported by Ansoft-HFSS and ADS, in terms of the micro switch which has different structural design as mentioned above.
The size of the optimized RF micro-switch which we developed for this study is only 145 £gm ¡Ñ 205 £gm. Switched from on-state to off-state, the component needs 36.5V drive voltage only. According to the result of the commercial network analyzer in 1-4.5GHz frequency range, the isolation rate of the components reaches -59.721dB while off-state; the insert los reaches -1.625dB while on-state.
|
152 |
Study of GaN LED current spreading and chip fabricationSie, Shang-jyun 20 July 2012 (has links)
In this thesis, we design electrode shape of light emitter diode (LED) to help the current diffusing uniformly. The purpose of the uniform current is to avoid the waste heat from the devices and enhance the efficiency of active region. The LED samples adopted in this study are GaN base materials grown on sapphire. The P-N electrodes must be processed on the same side since the poor conductivity of sapphire. The same side P-N electrode will results in current crowding phenomena. We design special electrode shapes to make the current diffuse uniformly and reduce the current crowding phenomena.
First, we use COMSOL simulation software to simulate the current spreading between the electrodes. We adopt the same parameters from the reference papers to confirm the reliabilities of the simulation. Then we simulate several electrode shapes with highly uniform current spreading.
Second, we use the simulation results to fabricate electrode on chips. The first set is LED without transparent conductive layer. This set is to confirm whether the fabrication processes is feasible and adjust the simulation parameters at the same time.
The second set is LED with transparent conductive layer. The experimental emission intensity has deviation from the simulation results. We deduce the emission intensities
from smaller LED chip size will have great influence on illumination surface. The third set is electrodes fabricated on large size LED chip. The electrode patterns successfully enhance the uniformity of current spreading, and enhance the output light
intensity of 21%. The current density distribution trend from simulation is matched with the illumination intensities.
|
153 |
Study of supercapacitor using composite electrode with mesocarbon microbeadsHo, Chia-wei 10 August 2012 (has links)
In this study, the carbon electrode of supercapacitor was fabricated by using mesocarbon microbeads. For finding the optimal processing parameters of carbon electrode, the effects of specific surface area of activated carbon, the amount of carbon black and binder, and various electrolytes on the capacitative properties of supercapacitor are investigated. To fabricate the composite electrode of supercapacitor, NiO and WO3 thin films were deposited respectively on the carbon electrode by electron beam evaporation. The influences of various scan rates of cyclic voltammograms (CV) on the characteristic of capacitance are studied. The charge-discharge efficiency and life time of the composite electrode are also discussed.
Experimental results reveal that the optimum carbon electrode can be obtained using mesocarbon microbeads with high specific surface area (2685 m2/g) and larger pore volume (0.6 cm3/g) and adding 10 wt.% carbon black and 2wt.% binder. The specific capacitances of carbon electrodes in 1 M KOH and 1 M Et4NBF4 are 230.8 F/g and 221.5 F/g, respectively. Besides, the XRD and SEM results showed that NiO and WO3 thin films on composite electrode are sheet-liked crystal structure and stone-liked amorphous structure, respectively. The composite electrode exhibits better capacitance properties than those of carbon electrode at high scan rate by CV analysis. It reveals the promotion of the capacitative property of supercapacitor at higher power density and the improving of the decay property in capacitance at high scan rate. Finally, in the test of charge-discharge efficiency and life time, the charge-discharge efficiency is near 100% after 5000 cycles and it still retains good adhesion between electrode material and substrate.
|
154 |
Amperomotric detection of sulfur-containing amino acids by capillary electrophoresis using boron-doped diamond microelectrodeLiu, Jung-chung 02 August 2004 (has links)
The fabrication and characterization of boron-doped diamond
microelectrodes for use in electrochemical detection
coupled with capillary electrophoresis (CE-EC) is
discussed. They exhibited low and stable background
currents and sigmoidally shaped voltammetric
curves for cysteine, cystine and Fe(CN)63-/4- .
Evaluation of the CE-EC
system and the electrode performance were accomplished
using a 10 mM borate buffer, pH 8.8, run
buffer, and a 70-cm-long fused-silica capillary (10-mm
i.d.) with seven sulfur-containing amino acids
(methionine, cysteine, cystine, homocysyeine, homocystine,
glutathionine, glutathionine disulfide) as test analytes.
Reproducible separation (elution time) and detection (peak
current) of seven sulfur-containing amino acids were observed with response precisions of 5% or less.
|
155 |
Study on The Nano-Structured Diamond Electrodes Grown by Microwave CVDChen, Yi-Jiun 17 June 2005 (has links)
The microstructure and electrochemical behavior of boron doped and undoped ultra thin diamond film electrodes have been studied in this work. The ultra thin diamond films are deposited on porous silicon (PSi) by microwave plasma chemical vapor deposition (MPCVD). In order to enlarge the surface area of diamond electrodes, the deposition of nano structured diamond thin films is performed only in a short time deposition under a negative bias, so that diamond nuclei grew from the tips of PSi nano structures and the thin film surface remained rough and nano fine structured. Diamond thin films were analyzed by Raman spectroscopy and SEM, and then fabricated to the electrode device. From SEM analysis, the morphology of diamond thin films on PSi reveals in the shape of nano rods diamond crystallites. The electro-chemical response was evaluated by performing cyclic voltammetry in the inorganic K4[Fe(CN)6] and a K2HPO4 buffer solution. Boron doped diamond thin film on porous silicon has demonstrated a high redoxidation current of cyclic voltammetry, which may be due to the rough surface providing more electrochemical surface area and more sp2 conducting bonds exposed on the surface.
|
156 |
noneChen, Der-chang 03 August 2001 (has links)
none
|
157 |
PAH degradation and redox control in an electrode enhanced sediment capYan, Fei, Ph. D. 03 October 2012 (has links)
Capping is typically used to control contaminant release from the underlying sediments. However, the presence of conventional caps often eliminates or slows natural degradation that might otherwise occur at the surface sediment. This is primarily due to the development of reducing conditions within the sediment that discourage hydrocarbon degradation. The objective of this study was to develop a novel active capping method, an electrode enhanced cap, to manipulate the redox potential to produce conditions more favorable for hydrocarbon degradation and evaluate the approach for the remediation of PAH contaminated sediment.
A preliminary study of electrode enhanced biodegradation of PAH in sediment slurries showed that naphthalene and phenanthrene concentration decreased significantly within 4 days, and PAH degrading genes increased by almost 2 orders of magnitude.
In a sediment microcosm more representative of expected field conditions, graphite cloth was used to form an anode at the sediment-cap interface and a similar cathode was placed a few centimeters above within a thin sand layer. With the application of 2V voltage, ORP increased and pH dropped around the anode reflecting water electrolysis. Various cap amendments (buffers) were employed to moderate pH changes. Bicarbonate was found to be the most effective in laboratory experiments but a slower dissolving buffer, e.g. siderite, may be more effective under field conditions. Phenanthrene concentration was found to decrease slowly with time in the vicinity of the anode. In the sediment at 0-1 cm below the anode, phenanthrene concentrations decreased to ~70% of initial concentration with no bicarbonate, and to ~50% with bicarbonate over ~70 days, whereas those in the control remained relatively constant. PAH degrading gene increased compared with control, providing microbial evidence of PAH biodegradation.
A voltage-current relationship, which incorporated separation distance and the area of the electrodes, was established to predict current. A coupled reactive transport model was developed to simulate pH profiles and model results showed that pH is neutralized at the anode with upflowing groundwater seepage.
This study demonstrated that electrode enhanced capping can be used to control redox potential in a sediment cap, provide microbial electron acceptors, and stimulate PAH degradation. / text
|
158 |
Electrochemical synthesis and characterization of redox-active electrode materialsHahn, Benjamin Phillip 17 April 2014 (has links)
This dissertation explores cathodic electrodeposition mechanisms that describe the synthesis of redox-active electrode materials. Several interesting elements are known to deposit at negative potentials (e.g., Mo, Re, Se), and by extending this work, we can tailor the growth of new binary systems (e.g., MoxRe₁₋xOy, MoxSe₁₋xOy) that have enhanced optical and electronic properties. To grasp the subtleties of deposition and understand how the growth of a particular phase is influenced by other species in solution, several analytical methodologies are used to thoroughly characterize film deposition, including chronocoulometry, voltammetry, nanogravimetry, UV-Visible spectroelectrochemistry, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and inductively coupled plasma mass spectrometry (ICPMS). Chapter 1 is a general introduction that discusses the growth of redox-active metal oxides and alloys with an emphasis on tuning the composition to enhance material performance. Chapter 2 proposes a mechanistic pathway for the deposition of rhenium films from an acidic perrhenate (ReVIIO₄⁻) solution containing both metallic and oxide components. Unlike many other metal anions, it was observed that ReVIIO₄⁻ adsorbs to the electrode surface prior to reduction. As such, ReVIIO₄⁻ is ideally situated to be a redox-active mediator for other electrochemical reactions, and in Chapter 3, this dissertation explores how ReVIIO₄⁻ increases the deposition efficiency of Mo oxide deposition. Depth profiling XPS supported by electrochemical studies demonstrated that Mo and Re deposit separately to form an inhomogeneous material, MoxRe₁₋xOy (0.6 < x ≤ 1.0). Over a limited potential range from –0.3 V to –0.7 V (vs Ag/AgCl) the rhenium mole fraction increases linearly with the applied voltage. Chapter 4 explores the deposition of MoxSe₁₋xOy, and in this case, the incorporation of Mo species in solution shifts the deposition of Se⁰ to more positive potentials. Depending on the applied potential used, voltammetry experiments suggest that a small amount of Mo (<5%) reduces to the zero-valent phase to yield the photosensitive alloy, MoxSey. Chapter 5 discusses future work and presents preliminary data describing the deposition of Se⁰ on ITO using adsorbed ReVIIO₄⁻ as a redox mediator. / text
|
159 |
Polymer coatings to improve host response to implanted neural electrodesGutowski, Stacie Marie 21 September 2015 (has links)
Neural electrodes are an important part of brain-machine interface devices that can restore functionality to patients with sensory and movement impairments including spinal cord injury and limb loss. Currently, chronically implanted neural electrodes induce an unfavorable tissue response which includes inflammation, scar formation, and neuronal cell death, eventually causing loss of electrode functionality in the long term. The objective of this research was to develop a coating to improve the tissue response to implanted neural electrodes. The hypothesis was that coating the surface of neural electrodes with a non-fouling, anti-inflammatory coating would cause reduced inflammation and a better tissue response to the implanted electrode. We developed a polymer coating with non-fouling characteristics, incorporated an anti-inflammatory agent, and engineered a stimulus-responsive degradable portion for on-demand release of the anti-inflammatory agent in response to inflammatory stimuli. We characterized the coating using XPS and ellipsometry, and analyzed cell adhesion, cell spreading, and cytokine release in vitro. We analyzed the in vivo tissue response using immunohistochemistry and microarray qRT-PCR. Although no differences were observed among the samples for inflammatory cell markers, lower IgG penetration into the tissue around PEG + IL-1Ra coated electrodes suggests an improvement in BBB integrity. Gene expression analysis showed higher expression of IL-6 and MMP-2 around PEG + IL-1Ra samples, as well as an increase in CNTF expression, an important marker for neuronal survival. An important finding from this research is the increased neuronal survival around coated electrodes compared to uncoated controls, which is a significant finding as neuronal survival near the implant interface is an essential part of maintaining electrode functionality.
|
160 |
Development of wireless DNA microarray sensorsChow, Kwok-Fan 20 October 2011 (has links)
The development of wireless DNA microelectrochemical microarray sensors is described. The operational principles of these sensors are based on bipolar electrochemistry. Bipolar electrodes are used to fabricate the wireless microarrays in this work. The systems are configured so that DNA sensing is carried out at the cathodic end of a bipolar electrode (BPE) and the result of the sensing experiment is reported at the anodic end of the BPE.
There are two types of reporting platforms developed in this study. The first type relies on the emission of electrogenerated chemiluminescence (ECL). The system is configured so that ECL is emitted at the anodic end of the BPE when the target DNA is hybridized to the capture probe DNA immobilized on the cathodic end of the BPE. However, when there is no hybridization reaction occurs, there is no ECL emission on the electrode surface.
The second type of reporting platform developed is based on silver electrodissolution at the anodic end of a BPE. When a reduction reaction occurs at the cathodic end of a BPE, it triggers oxidation and dissolution of silver deposited at the anodic end of the BPE. The loss of silver can easily be detected by the naked eye. This detection principle is used for DNA detection: when the target DNA is hybridized to capture probe DNA on the BPE, the BPE becomes shorter. However, if target DNA does not hybridize to the electrode surface, the length of the BPE remains the same.
The BPE microarrays described in this work eliminate the need for complicated microfabrication procedures and instrumentation. For example, as many as 1000 BPEs can be simultaneously controlled using just two driving electrodes and a simple power supply. To fully utilize BPE microarrays for specific sensing tasks, a method based on robotic spotting was developed to modify the cathodic end of each BPE in the array. Because each BPE in a microarray is individually addressable, this development allows each BPE to perform a particular sensing operation. / text
|
Page generated in 0.2544 seconds