361 |
Sustainable synthesis of FeMn films and fabrication of Fe/Mn-based micromotorsFernandez Barcia, Monica 04 March 2020 (has links)
The fabrication of transient electronic devices based on non-toxic materials is an emerging field, in which the key characteristic is the complete dissolution of the devices within a settled period of time. Usually, these devices are built in polymeric substrates or pure metals; however they show some disadvantages such as low degradation rate. The aim of this work was to investigate the feasibility of electrodeposition of FeMn-based films from green sulfate-based aqueous electrolytes without and with the use of additives toward the possible replacement of the aforementioned materials. The results obtained from the first experiments regarding the electrodeposition of Fe and Mn as single metals allowed the design of the experiment to synthesize FeMn layers. Potentiostatic deposition of metallic Mn layers from environmentally friendly aqueous manganese sulphate electrolytes with a pH value of 3 was successfully demonstrated. A continuous flow in the cathodic compartment of the electrochemical cell to control the pH value during the electrodeposition experiments was found to be essential for achieving good layer qualities. It also allowed the co-electrodeposition with a second element, Fe, which also needs an acidic pH value to be electrodeposited from aqueous electrolytes. Cyclic voltammetry analyses were performed in combination with electrochemical quartz microbalance measurements in the MnSO4 containing electrolytes and a suitable deposition potential range was identified. The electrolyte composition played an important. The addition of H3BO3 provided mechanical stability to the Mn films and avoided their disintegration. An increase of the (NH4)2SO4 concentration increases the deposit roughness but also the layer quality, without impurities and a better crystalline α-Mn structure. An increase of the deposition potential led to an increase of the film thickness. Mn-oxides/-hydroxides were identified only in a thin surface region of the films. The Mn electrodeposited films were deeply characterized by means of SEM, XRD, GD-OES and XPS. The results related to the Mn electrodeposition allowed further design of the electrolytes and experiments to electrochemically synthesize FeMn layers. The assessment of the impact of the electrodeposition parameters on the structural, morphological and magnetic properties of the obtained films was also aimed in this work. With view to possible application of FeMn-based films in transient devices, their corrosion behavior in chloride-containing solution and their cytotoxicity were also evaluated. The electrolytes were characterized by means of CV and EQCM analyses. The ratio of the metal ions Mn2+:Fe2+ and the presence of glycine as complexing agent in the electrolyte determined the layer composition. The formation of the complexes Fe(gly)+ and Mn(gly)+ established a new reduction step modifying the Fe and Mn reduction/deposition. Glycine also leaded to a better film quality. A set of magnetron co-sputtered FeMn thin films was deposited as reference in order to compare the two synthesis methods with a broader range of Mn content between 10 and 70 wt.%. Metallic electrodeposited FeMn films presented a bcc structure with a Im-3m symmetry as well as the sputtered samples with a low Mn content up to 25 wt.%. An increase of the Mn content in the electrodeposited layers yielded to the formation of oxidized compounds with a fcc structure and Fm-3m symmetry. An increase in the Mn content for the sputtered films maintained the bcc structure but the symmetry was lowered to I-43m. With view to possible application of FeMn-based films in transient devices, their corrosion behavior in chloride-containing solution and their cytotoxicity were also evaluated. Regarding their corrosion behaviour, both techniques produced FeMn films with an active dissolution behaviour in chloride containing solutions. In vitro cytotoxicity tests revealed significant biocompatible characteristics of the sputtered films regardless of their Mn content. However, electrodeposited FeMn based layers did not presented optimal biocompatible characteristics. Furthermore, template-assited electrodeposition to obtain microrobots was studied in this work. Observed confinement effect was exploited, which results in compositional gradients with Mn-rich and Fe-rich regions and tubular or mushroom-like shapes. The propulsion performance of these electrochemically prepared hybrid micromotors was studied in the presence of H2O2 fuel with Triton-X as a surfactant and a magnetic field of 23.5 mT was applied. Bubbles produced by the catalytic decomposition of the H2O2 by the MnO2 and MnFe2O4 compounds was clearly the motion mechanism. Wireless modulated trajectory by the application of an external magnetic field was possible thanks to the magnetic phases, Fe3O4 and MnFe2O4.
|
362 |
Elektrochemisch hergestellte Fe-Pd-Schichten und Nanodrähte - Morphologie, Struktur und magnetische EigenschaftenHähnel, Veronika 15 December 2014 (has links)
Mit Fe-Pd-Legierungen nahe der Zusammensetzung Fe70Pd30 kann man aufgrund des thermischen oder magnetischen Formgedächtniseffekts große Dehnungen erzeugen. Daher sind sie für Mikro- und Nanoaktoren sowie Sensoren von großem wissenschaftlichen und technologischen Interesse. Im Vergleich zu Massivmaterial und dünnen Schichten erwartet man für eindimensionale Geometrien wie Nanodrähte deutlich höhere Arbeitsfrequenzen und Dehnungen. Zur Herstellung von Nanodrähten eignet sich die elektrochemische Abscheidung in selbstordnende nanoporöse Membranen als effizienteste Methode gegenüber lithographischen oder physikalischen Methoden.
Um den Formgedächtniseffekt auch in Fe-Pd-Nanodrähten mit ca. 30 at.% Pd zu nutzen, werden in dieser Arbeit entsprechende Herstellungsbedingungen wie Elektrolytsystem, Abscheideparameter und Nachbehandlung herausgearbeitet. Die Zusammenhänge zwischen Abscheidebedingungen und Morphologie, lokaler Mikrostruktur, Struktur sowie magnetischen Eigenschaften werden untersucht und bewertet.
Es wird gezeigt, dass Fe-Pd-Nanodrähte trotz der Kombination aus edlem und unedlem Metall elektrochemisch hergestellt werden können. Ein komplexierter Fe-Pd-Elektrolyt in Kombination mit optimierten alternierenden Abscheidepotentialen führt reproduzierbar zu durchgehenden, nahezu defektfreien Nanodrähten nahe der Zusammensetzung Fe70Pd30. Mit einer nachträglichen Wärmebehandlung erreicht man eine vollständige Umwandlung der Fe-Pd-Legierung von der kubisch raumzentrierten zur kubisch flächenzentrierten Struktur. Die erfolgreiche Herstellung dieser Nanodrähte stellt eine Schlüsselposition auf dem Weg zu formgedächtnisbasierten Nanoaktoren dar. In dieser Arbeit konnten wichtige Ansatzpunkte zur Strukturkontrolle während der elektrochemischen Abscheidung und somit zur Aktivierung des Formgedächtniseffekts identifiziert werden. / Fe-Pd alloys at about 30 at.% Pd allow obtaining high length changes or strains in the percent range due to thermal or magnetic shape memory effect. They are especially promising candidates for smart and intelligent materials in micro- and nanoactuators as well as sensors. In comparison to bulk materials and thin films the utilization of nanowires promises higher actuation frequencies and strains, which further heighten the scientific and technological interest.
Electrodeposition within self-organized nanoporous templates is a very time efficient method to prepare even large arrays of Fe-Pd nanowires of different length and diameter compared to lithographic or physical methods. The aim of this work is to exhibit the preparation conditions such as electrolyte system, deposition parameter and post treatment for shape memory active Fe-Pd nanowires at about 30 at.% Pd. Correlations between morphology, local microstructure, structure and magnetic properties are investigated and evaluated.
Fe-Pd nanowires are successfully prepared by electrodeposition despite the combination of noble Pd and less noble Fe metals. The usage of an electrolyte with complexed Fe and Pd ions and an optimized alternating potential deposition regime leads to continuous and almost defect free nanowires close to the composition Fe70Pd30. The complete transition from the bcc to fcc structure of the Fe-Pd alloy is achieved by an additional heat treatment. However, the successful preparation of these nanowires represents a key element towards nanoactuators based on shape memory alloys. Fundamental knowledge about electrochemical preparation of Fe-Pd nanowires is gained. Important starting points towards structure control during deposition and activation of the shape memory effect are identified.
|
363 |
Surface Influence on the First Stages of Metal Electrodeposition in Ionic LiquidsSebastián, Paula 20 July 2018 (has links)
Esta tesis es un estudio profundo de las propiedades interfaciales Metal|líquido iónico (LI), y como estas influyen en las primeras etapas de formación de electrodepósito metálico. Dos líquidos iónicos, de dos familias diferentes, se han escogido para el análisis: un Room Temperature Ionic Liquid (RTIL): [Emmim][Tf2N]; y un Deep Eutectic Solvent (DES): 1ChCl:2urea. Para estudiar la influencia superficial en los distintos procesos, se empleó monocristales de platino (Pt(111)) y de oro Au(hkl), principalmente. El análisis inicial de las propiedades interfaciales M(hkl)|LI se realizó utilizando, entre otras técnicas, la técnica de salto de temperatura con láser pulsante, técnica que además permitió estimar el valor de potencial de carga (valor característico de la interfase metal|electrolito) en cada caso. Una vez caracterizados electroquímicamente estos sistemas, ambos LIs se utilizaron para estudiar el depósito metálico en distintas superficies tanto orientadas como poliorientadas. En concreto, se investigó el depósito de Ag y Cu en DES y sobre carbono vítreo, obteniendo que el DES influenciaba el mecanismo de nucleación y crecimiento y permitía modular el tamaño de grano. Se analizó la formación de ad-capas UPD de Cu en Au(hkl) y en DES, observándose dependencia del proceso con la orientación del sustrato y el tipo de electrolito. Finalmente, se evaluó la aplicabilidad de estos dos solventes para modificar un sustrato orientado de platino (Pt(111)) con Ni, y la sensibilidad superficial del proceso, para ello combinando técnicas clásicas como voltametría cíclica y cronoamperometría con técnicas ex-situ como SEM y AFM (para recubrimientos de baja cobertura). El presente trabajo doctoral muestra el potencial de estos solventes para modificar una superficie con distinto metales y de forma sencilla, a través de la técnica formación de depósito electroquímico, abriendo la posibilidad de utilizar estos novedosos solventes para el diseño de nuevos materiales.
|
364 |
Electrochemical Phase Formation of Ni and Ni-Fe Alloys in a Magnetic FieldIspas, Adriana 31 August 2007 (has links)
The aim of this work was to investigate the effects that a magnetic field can induce during the electrodeposition of Ni and Ni-Fe alloys. Special regard was given to mass transport controlled effects. Magnetic field effects on the nucleation and growth of ferromagnetic layers and on the properties of electrodeposited layers (like grain size, texture, morphology or roughness) were investigated. The influence of a magnetic field on the magnetic properties of Ni layers and on the composition of Ni-Fe alloys was also studied. Nucleation and growth of thin Ni layers on gold electrodes under a superimposed magnetic field were analysed in-situ with the Electrochemical Quartz Crystal Microbalance technique. Three theoretical models were chosen for characterizing the Ni nucleation: Scharifker-Hills (SH), Scharifker-Mostany (SM) and Heerman-Tarallo (HT). The AFM images proved that more nuclei appear in a magnetic field in the case that the Lorentz force and the natural convection act in the same direction. From all the models, the HT model gave the best agreement with the AFM results. When the Lorentz force and the natural convection act in the same direction, an increase of the Ni partial current with the magnetic field was obtained. When they act in opposite directions, the Ni current was influenced just at the beginning of deposition (first 10 seconds). At longer times, the magnetic field has no effect on the Ni current. However, the total current (jNi+jHER) decreases with the magnetic field. In the absence of a macroscopic MHD convection, the Ni current decreases with the magnetic field the first 10-15 seconds of deposition. On longer time scales no influence of the magnetic field could be noticed for this configuration. When the magnetic field was applied perpendicular to the electric current, an increase of the hydrogen evolution reaction (HER) with the magnetic flux density was noticed. Hydrogen reduction is mass transport controlled. Therefore, the magnetic field will increase the limiting current of the HER. Optical microscopy images showed that the hydrogen bubbles were circular in the absence of the MHD convection and that they presented a tail when a Lorentz force was present. The direction of the tail depends on the net force induced by the natural and MHD convections. The interplay between the natural and MHD convections proved to be important during Ni-Fe alloy deposition, too. When the Lorentz force and the natural convection act in the same direction, an increase of the Fe content of the alloys with the magnetic field was observed. When the Lorentz force was perpendicular to the natural convection, no significant changes were observed in the composition of the layers. The alloy composition did not change with the magnetic field when the electric current was parallel to the magnetic field lines. Two surfactants were used in the case that Ni was electrodeposited from a sulfamate bath: SDS and sulfirol 8. The Ni layers obtained from a sulfamate bath with sulfirol 8 presented larger grains compared to the layers deposited from a bath free of surfactants. This increase of the grain size was attributed to the incorporation of the surfactant in the deposit. Coarser layers were obtained in a magnetic field (applied perpendicular to the electric current) when the electrodeposition was done from an electrolyte with surfactants. The number of grains increased with the magnetic field for the Ni layers electrodeposited from a bath free of surfactants and for a bath with SDS. As a consequence, the grain size decreased. In the case of the electrolyte with sulfirol 8, the number of grains decreased with the magnetic field, and their size increased. For the Ni-Fe alloys, which contained less than 10 at% Fe, the preferred crystalline orientation changes from (220), in the absence of a magnetic field, to (111), (when the magnetic field was applied perpendicular to the electric current). When the magnetic field lines were parallel to the electric current, both the (111) and (220) textures were preferred in almost the same proportion. As a general conclusion of this work it can be said that by choosing the right experimental condition, one can improve the morphology and the properties of the deposited layers by applying a magnetic field. At the same time, the mass transport processes can be influenced by a magnetic field.
|
365 |
Magnetic-field-assisted electrodeposition at conically structured metal layersHuang, Mengyuan 24 June 2022 (has links)
Konische Mikro- und Nanostrukturen besitzen spezifische magnetische, superhydrophobe und elektrokatalytische Eigenschaften und sind deshalb von hohem Interesse für eine Vielzahl von Anwendungen.
Eine einfache und kostengünstige Methode zur Synthese dieser strukturierten Schichten ist die elektrochemische Abscheidung. Neben dem Einsatz von Capping-Reagenzien (engl. Capping agents) könnten Magnetfelder das lokale Konuswachstum auf einer planaren Elektrode unterstützen.
In der vorliegenden Dissertation wird die Elektroabscheidung an konisch strukturierten Metallschichten in Magnetfeldern untersucht.
Je nach Ausrichtung und Stärke des Magnetfeldes können die Lorentzkraft und die magnetische Gradientenkraft die Strömung des mit Metallionen angereicherten Elektrolyts in Richtung der Konusspitze gezielt antreiben.
Folglich erhöht das Magnetfeld die lokale Abscheidungsrate und fördert das Konuswachstum. Für ein grundlegendes Verständnis des Effektes werden
systematische numerische und theoretische Untersuchungen für die Elektroabscheidung an mm-großen Konen unterschiedlicher Materialien, Formen und Anordnungen unter verschiedenen elektrochemischen und magnetischen Bedingungen durchgeführt. Ein parallel zur Konusachse ausgerichtetes homogenes externes Magnetfeld erzeugt durch die Magnetisierung der ferromagnetischen Konen eine magnetische Gradientenkraft, die zu einer starken Unterstützung für das Konuswachstum führt. Dabei überwiegt sie oft gegenüber der Lorentzkraft und der Auftriebskraft, die durch Elektrodenreaktionen entsteht. Diese unterstützende Wirkung wird nur geringfügig abgeschwächt, wenn sich benachbarte Konusse einander annähern. Die numerischen Ergebnisse werden durch experimentelle Daten für verschiedene Konfigurationen und Abscheidungsparameter validiert.
Um den Effekt der Magnetfelder zur Unterstützung des Wachstums kleinerer konischer Strukturen im Mikro- und Nanometerbereich zu ermitteln,
werden die Skalengesetze für die Geschwindigkeiten der magnetisch angetriebenen lokalen Strömungen beim Verkleinern der Konusgröße aus numerischen Simulationen abgeleitet und durch eine analytische Lösung bestätigt. Obwohl die magnetische Gradientenkraft eine günstige Strömung bei ferromagnetischen Konussen erzeugt, limitieren die kleine Größe der Strömungsregion und die nahezu konstant verbleibende Dicke der Konzentrationsgrenzschicht die Unterstützung der Magnetfelder. Diese kann jedoch durch die Anwendung gepulster Ströme sowie moderat auch durch den Einsatz stärkerer Magnetfelder weiter erhöht werden. Weiterhin wird
eine einfache Modellierung entwickelt, um den Einfluss von Capping-Reagenzien bei der Abscheidung von Nano-Strukturen numerisch zu simulieren.
Experimentelle Resultate der von Partnern in Krakau durchgeführten Elektroabscheidung von nanostrukturierten Ni-Schichten in magnetischen Feldern werden mittels Simulationen sowohl globalen Zellströmung als auch der lokalen Strömung analysiert. Die Betrachtung beider Aspekte liefert eine Interpretation der experimentellen Ergebnisse und ermöglicht ein besseres Verständnis der Wirkung des capping agents.
Zum Schluss wird der Einfluss der Wasserstoff-Nebenreaktion einbezogen.
Die numerischen Ergebnisse zeigen, dass an der Konusspitze sitzende Wasserstoffblasen das Konuswachstum verringern können. Gleichzeig wird die durch die magnetischen Kräfte getriebene Strömung die Ablösung der Wasserstoffblase geringfügig verzögern. / Micro- and nano-sized conical structures possess specific magnetic, superhydrophobic and electrocatalytic properties and are therefore attractive for numerous applications. Among the various methods of manufacturing such structured layers, electrodeposition appears a simple and inexpensive method. Beside the use of capping agents, the application of magnetic fields could support the local growth of cones on a non-templated planar electrode.
This dissertation investigates electrodeposition at conically structured metal layers in external magnetic fields. Depending on the direction and the intensity of the magnetic field, the Lorentz force and the magnetic gradient force can generate electrolyte flow and bring electrolyte enriched with metal ions towards the cone tips. As a result, the local deposition rate is increased and conical growth is promoted. In order to obtain a basic understanding of the magnetic field effects, systematic numerical and theoretical investigations are performed for electrodeposition at mm-sized cones of different materials, shapes and arrangements under different electrochemical and magnetic conditions. If a uniform external magnetic field is oriented parallel to the cone axis, the magnetic gradient force enabled by the magnetization of ferromagnetic cones provides a strong support for conical growth, thereby often dominating over the Lorentz force and the buoyancy force arising from electrode reactions. This supporting effect is only slightly mitigated when neighboring cones are getting closer. The numerical results shown are validated by experimental data for different configurations and deposition parameters.
In order to explore the prospects of magnetic fields to enhance the growth of smaller, micro- and nanometer sized conical structures, scaling laws of the local flows driven by the magnetic forces are derived numerically and confirmed analytically for shrinking cone sizes. Although the magnetic gradient force can generate a beneficial flow at ferromagnetic cones, the small flow region and the nearly constant thickness of the concentration boundary layer limit the support of the magnetic field. Enhancements of the structuring effect are observed for pulsed deposition and, despite only moderately, at higher magnetic field intensities. Furthermore, a simplified modeling approach is developed to simulate the growth mechanism of nano-cones with respect to the influence of capping agents.
Experimental results of the electrodeposition of Ni cones in magnetic fields obtained by partners in Krakow are analyzed by performing simulations of both the global cell flow and the local flows generated by magnetic fields of different orientations. This two-step approach provides an interpretation of the experimental results, and gives a deeper insight on how the capping agent influences the local growth.
Finally, the impact of the hydrogen side reaction on the electrodeposition in magnetic fields is considered. The numerical results indicate that hydrogen bubbles sitting at the cone tips may damp conical growth, while the magnetic-field-driven flow imposes a weak stabilizing force on the bubble.
|
366 |
THE ROLE OF ION TRANSFER IN NANODROPLET-MEDIATED ELECTRODEPOSITIONJoshua Reyes Morales (16925016) 05 September 2023 (has links)
<p dir="ltr">Nanoparticles have seen immense development in the past several decades due to their intriguing physicochemical properties. The modern chemist is interested not only in methods of synthesizing nanoparticles with tunable properties but also in the chemistry that nanoparticles can drive. While several methods exist to synthesize nanoparticles, it is often advantageous to put nanoparticles on a variety of conductive substrates for multiple applications (such as energy storage and conversion). Despite enjoying over 200 years of development, the electrodeposition of nanoparticles suffers from a lack of control over nanoparticle size and morphology. Understanding that structure-function studies are imperative to understand the chemistry of nanoparticles, new methods are necessary to electrodeposit a variety of nanoparticles with control over macro-morphology but also microstructure. When a nanodroplet full of a metal salt precursor is incident on the electrode biased sufficiently negative to drive electroplating, nanoparticles form at a shocking rate (on the order of microseconds to milliseconds). We start with the general nuts-and-bolts of the experiment (nanodroplet formation and methods for electrodeposition). The deposition of new nanomaterials often requires one to develop new methods of measurement, and we detail new measurement tools for quantifying nanoparticle porosity and nanopore tortuosity within single nanodroplets. Owing to the small size of the nanodroplets and fast mass transfer, the use of nanodroplets also allows the electrodeposition of high entropy alloy nanoparticles at room temperature. Electrodeposition in aqueous nanodroplets can also be combined with stochastic electrochemistry for a variety of interesting studies. We detail the quantification of the growth kinetics of single nanoparticles in single aqueous nanodroplets. Nanodroplets can also be used as tiny reactors to trap only a few molecules, and the reactivity of those molecules can be electrochemically probed and evaluated with time. Overall, this burgeoning synthetic tool is providing unexpected avenues of tunability of metal nanoparticles on conductive substrates. Moreover, there is little understanding of how ion transfer can affect the fundamental of nanoparticle synthesis with nanodroplet-mediated electrodeposition. This thesis details different experiments performed to study the role of ion transfer during the nucleation and growth of nanoparticles.</p>
|
367 |
Improving The Efficiency Of Ammonia Electrolysis For Hydrogen ProductionPalaniappan, Ramasamy January 2013 (has links)
No description available.
|
368 |
Conducting Polymers / Polyimide-Clay Nanocomposite Coatings for Corrosion Protection of AA-2024 AlloyShah, Kunal G. 02 July 2004 (has links)
No description available.
|
369 |
Multifunctional Materials from Nanostructured Graphene and DerivativesMANGADLAO, JOEY DACULA 27 January 2016 (has links)
No description available.
|
370 |
Sb-Te Phase-change Materials under Nanoscale ConfinementIhalawela, Chandrasiri A. 15 July 2016 (has links)
No description available.
|
Page generated in 0.0962 seconds