• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 18
  • 11
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Élaboration d'un cœur d'électrolyseur à conduction protonique à base de phyllosilicates fonctionnant entre 200 et 300 °C pour l'électrolyse de l'eau et l'hydrogénation du gaz carbonique issu de la biomasse / Elaboration of phyllosilicate based protonic conductor heart of electrolyser working at temperatures between 200°C and 300°C for water electrolysis and the hydrogenation of carbonic gas resulting from biomass

Micheletti, Andrea 23 November 2018 (has links)
L'objectif de la thèse est de fabriquer un conducteur protonique à base de phyllosilicates, fonctionnant à une température comprise entre 200°C et 300°C pour la production d'hydrogène d'une part, et l'hydrogénation du CO2 issu de la biomasse d'autre part. Le dépôt sera effectué sur un substrat en acier fritté, mis au point spécifiquement en collaboration avec le fournisseur.Afin d'appréhender les phénomènes régissant la croissance du dépôt et donc, pouvoir optimiser les performances du procédé, un suivi in-situ par spectroscopie d'impédance électrochimique sera effectué pour chaque essai. Ces analyses seront couplées avec d'autres analyses ex-situ (MEB,XPS,...). L'objectif étant de pouvoir contrôler minutieusement les caractéristiques de la couche formée, et reproduire rapidement le procédé à l'échelle industrielle.A la fin de la thèse, les résultats seront intégrés dans le programme SOLARVI, qui vise à stocker l'énergie issue de sources renouvelables pour la production d'hydrogène d'une part, et la transformation du CO2 issu de la biomasse en produits valorisables dans le domaine de l'énergie et dans la chaîne du carbone d'autre part. / This thesis aims at the elaboration of a phyllosilicate-based protonic conductor working at temperatures between 200°C and 300°C for hydrogen production and hydrogenation of CO2 coming from biomass. The deposit will be carried out on a sintered steel alloy, developed with the supplier.In order to understand the phenomena governing the growth of the deposit, an in-situ monitoring will be performed for each test, by electrochemical impedance spectroscopy. These analyses will be coupled with other ex-situ analyses (SEM, XPS...). That will allow us to obtain the good final properties of the protonic layer and quickly bring the process at industrial scale.At the end of the thesis, all results will be integrated within SOLARVI program, which aims at the energy storage coming from renewable sources, by hydrogen prduction and transformation of CO2 into products which could be valorized in energy and chemistry fields.
12

Development of a small-scale electro-chlorination system for rural water supplies

Key, Julian D.V. January 2010 (has links)
>Magister Scientiae - MSc / To address the urgent need for safe potable water in South Africa’s rural areas, sustainable systems for water disinfection at the village-scale of operation are required.In this thesis, the development of a small-scale water chlorination system that runs on salt and solar panels is described. The system combines a membrane-based hypochlorite generator, or “membrane electrolyser”, with an automated hypochlorite dosing system.The system was designed to (i) coordinate hypochlorite production and dosing automatically in a flow-through system, and (ii) fit inline with low pressure pipelines from overhead storage tanks or raised water sources. Low cost materials were used for construction, and water-powered mechanisms were devised to control both brine supply to the electrolyser and regulation of water flow. The capacity of the system was based on the maximum daily output of the electrolyser at ~20 g of sodium hypochlorite. This was sufficient chlorinate up to 10 kL of water per day using less than 80 g of salt and less than 0.1 kW.h of electricity. The cost of the system was estimated at ~R10 000 and therefore potentially affordable for communities up to 100 people, e.g. small farms and villages.Testing of the system was carried out at a farm site in Worcester (Western Cape) using remote monitoring of current levels in the electrolyser. Operation of the system over a two month test period, dosing at ~4 mg/L, produced consistent chlorination measured as(FAC). Community participation in maintenance of the brine supply was managed and chlorinated water was made available to the community after a brief social survey was conducted. Community awareness of chlorination was minimal. No significant history of diarrhoea was reported. However, the community regularly boiled their tap water in response to turbidity increase in summer.The system was affected by turbidity increase in the local water, which caused a drop in electrolyser current and chlorine production due to particle blockage of the membrane in the electrolyser. However, turbidity at acceptable levels for chlorination was found to have no detrimental effect on the system’s performance. The system showed promise for rural implementation providing low turbidity was maintained. Therefore,groundwater sites, and surface waters with appropriate clarification systems are recommended for the system’s installation. Further testing of the system will be required to establish its long term viability in the hands of a rural community.
13

Elektrolyzér pro výrobu vodíku / Electrolyzer for hydrogen production

Kunovjánek, Miroslav January 2008 (has links)
The work is concerned with a production of hydrogen and oxygen through by the help of electrolytic process in a device called electrolyzer. The basis of the work is assurance of the best efficiency of this process by testing a variety of materials and surfaces of electrodes, and testing different types of alkalic electrolytes.
14

Techno-Economic Assessment of High-Temperature H2O/CO2 : Co-Electrolysis in Solid Oxide Electrolysers for Syngas Production / Teknoekonomisk Bedömning av Hög temperatur H2O/CO2 : Samelektrolys i fast material Oxidelektrolysörer för Syngas produktion

Jambur, Shivani Ramprasad January 2022 (has links)
High-temperature Co-electrolysis of H2O and CO2 in a solid-oxide electrolyser (Co-SOE) for syngas production is a high-efficiency renewable electricity conversion and storage method part of the Power-to-X technologies. Syngas, a mixture of H2, CO and CO2, is a critical building block to make several chemical and synthesis fuels. The thesis aimed to model the Co-electrolysis process in a steady-state process modelling tool called Aspen Plus. The model was designed at thermoneutral mode and four cases with electrolysis temperatures of 700 °C, 750 °C, 800 °C and 850°C. The results from the model were used to perform an economic assessment and check the feasibility of Co-SOE. The analysis included calculation of Net Present Value (NPV), Internal Rate of Return (IRR) and the Levelised cost of Syngas (LCOS). The LCOS from Co-SOE was compared to the benchmark technology of syngas production in a Reverse Water Gas Shift (RWGS) reactor. The H2 feed to the RWGS reactor was assumed to be obtained from a Proton Exchange Membrane Electrolyser(PEME). A sensitivity analysis was performed to check the effect of electricity price, electrolyser stack price, electrolyser lifetime, CO2 feed price, by-product O2 revenue and discount rate on the LCOS. The LCOS was calculated to be 0.697, 0.727, 0.752 and 0.783 €/kg at 700 °C, 750 °C, 800 °C and 850 °C, respectively, increased with temperature due to increased electricity consumption at thermoneutral mode. The average LCOS from Co-SOE was 18.5% cheaper than the benchmark technology due to the high investment in the PEME and low conversion efficiency of the RWGS process. There was a trade-off between LCOS and system efficiency due to the effect of internal methanation occurring on the cathode side of the SOE. 750 °C was found to be the optimum design temperature to minimise the LCOS and maximise the efficiency. LCOS was most sensitive to electricity price, followed by O2 revenue and discount rate, while other parameters were less significant. The thesis also discussed key challenges to overcome in the future development of the Co-SOE technology. Co-SOE was found to be a promising technology for green syngas production. However, challenges concerning low stack lifetime, high capital investment and high cost of electricity have yet to be overcome to demonstrate it at a commercial scale.
15

Pt and Au as electrocatalysts for various electrochemical reactions / Marthinus Hendrik Steyn

Steyn, Marthinus Hendrik January 2015 (has links)
In this study the focus was on the electrochemical techniques and aspects behind the establishment of the better catalyst (platinum or gold) for the sulphur dioxide oxidation reaction (SDOR). One of the primary issues regarding the SDOR is the catalyst material, thus the comparative investigation of the performance of platinum and gold in the SDOR, as found in this study. Ultimately, the SDOR could lead to an effective way of producing hydrogen gas, which is an excellent energy carrier. The electrochemical application of the oxygen reduction reaction (ORR) and ethanol oxidation reaction (EOR) is an integral part of the catalytic process of water electrolysis, and by using fuel cell technology, it becomes even more relevant to this study and can therefore be used as a control, guide and introduction to the techniques required for electrochemical investigation of catalyst effectiveness. Subsequently, the EOR as well as the ORR was used as introduction into the different electrochemical quantification and qualification techniques used in the electrochemical analyses of the SDOR. Considering the ORR, gold showed no viable activity in acidic medium, contrarily in alkaline medium, it showed good competition to platinum. Gold also lacked activity towards the EOR in acidic medium compared to platinum, with platinum the best catalyst in both acidic and alkaline media. Ultimately, platinum was established to be the material with better activity for the ORR with gold a good competitor in alkaline medium, and platinum the better catalyst for the EOR in both acidic and alkaline media. With the main focus of this study being the SDOR, gold proved to be the best catalyst in salt and gaseous forms of SO2 administration compared to platinum when the onset potential, maximum current density, Tafel slope and number of electrons transferred are taken into consideration. The onset potential was determined as 0.52 V vs. NHE for both platinum and gold using SO2 gas and 0.54 V and 0.5 V for gold and platinum respectively, using Na2SO3 salt. The maximum current density using gaseous SO2 for platinum at 0 RPM was 400 mA/cm2 with a Tafel slope of 891 mV/decade whereas gold had a maximum current density of 300 mA/cm2 and a Tafel slope of 378 mV/decade. Using Na2SO3 salt, the maximum current density of gold was 25 mA/cm2 with a Tafel slope of 59 mV/decade whereas platinum only achieved 18 mA/cm2 with a Tafel slope of 172 mV/decade. Concerning the number of electrons transferred, gold achieves a transfer of 2 while platinum only 1 for both SO2 gas and Na2SO3 salt. Taking all these summarised determinations into account, gold was established to be a very competitive catalyst material for the SDOR, compared to platinum. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2015
16

Pt and Au as electrocatalysts for various electrochemical reactions / Marthinus Hendrik Steyn

Steyn, Marthinus Hendrik January 2015 (has links)
In this study the focus was on the electrochemical techniques and aspects behind the establishment of the better catalyst (platinum or gold) for the sulphur dioxide oxidation reaction (SDOR). One of the primary issues regarding the SDOR is the catalyst material, thus the comparative investigation of the performance of platinum and gold in the SDOR, as found in this study. Ultimately, the SDOR could lead to an effective way of producing hydrogen gas, which is an excellent energy carrier. The electrochemical application of the oxygen reduction reaction (ORR) and ethanol oxidation reaction (EOR) is an integral part of the catalytic process of water electrolysis, and by using fuel cell technology, it becomes even more relevant to this study and can therefore be used as a control, guide and introduction to the techniques required for electrochemical investigation of catalyst effectiveness. Subsequently, the EOR as well as the ORR was used as introduction into the different electrochemical quantification and qualification techniques used in the electrochemical analyses of the SDOR. Considering the ORR, gold showed no viable activity in acidic medium, contrarily in alkaline medium, it showed good competition to platinum. Gold also lacked activity towards the EOR in acidic medium compared to platinum, with platinum the best catalyst in both acidic and alkaline media. Ultimately, platinum was established to be the material with better activity for the ORR with gold a good competitor in alkaline medium, and platinum the better catalyst for the EOR in both acidic and alkaline media. With the main focus of this study being the SDOR, gold proved to be the best catalyst in salt and gaseous forms of SO2 administration compared to platinum when the onset potential, maximum current density, Tafel slope and number of electrons transferred are taken into consideration. The onset potential was determined as 0.52 V vs. NHE for both platinum and gold using SO2 gas and 0.54 V and 0.5 V for gold and platinum respectively, using Na2SO3 salt. The maximum current density using gaseous SO2 for platinum at 0 RPM was 400 mA/cm2 with a Tafel slope of 891 mV/decade whereas gold had a maximum current density of 300 mA/cm2 and a Tafel slope of 378 mV/decade. Using Na2SO3 salt, the maximum current density of gold was 25 mA/cm2 with a Tafel slope of 59 mV/decade whereas platinum only achieved 18 mA/cm2 with a Tafel slope of 172 mV/decade. Concerning the number of electrons transferred, gold achieves a transfer of 2 while platinum only 1 for both SO2 gas and Na2SO3 salt. Taking all these summarised determinations into account, gold was established to be a very competitive catalyst material for the SDOR, compared to platinum. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2015
17

Solar driven hydrogen generation for a fuel cell power plant

Amoo, Akinlawon Olubukunmi 09 1900 (has links)
Thesis. (M. Tech. (Dept. Electronic Engineering, Faculty of Engineering and Technology))--Vaal University of Technology, 2011. / There are a number of ways to produce hydrogen using solar energy as the primary source. Water electrolysis, which uses solar electrical energy, is the rapidly available process. Hydrogen can be produced by using solar electric energy from photovoltaic (PV) modules for the electrolysis of water without emitting carbon dioxide or requiring fossil fuels. Solar hydrogen energy systems are considered one of the cleanest hydrogen production technologies, where the hydrogen is obtained from sunlight by directly connecting the photovoltaic modules to the hydrogen generator. This dissertation presents a designed solar photovoltaic electrolyser hydrogen production and storage system for various applications such as in the power generation and telecommunications industries. Various experiments were performed on the designed system to ensure its reliability and conformity with theoretical findings. The purity of the generated hydrogen was determined. The relationship between the amount of solar irradiance reaching the surface of the PV panel, the PV panel surface temperature, the PV panel tilt angle and the maximum power point voltage and current of the PV panel array were also considered. The effect of dust on the panel voltage and current outputs was also determined. Finally, the factors to consider when designing a solar photovoltaic electrolyser hydrogen system (based on this study) were enumerated.
18

Evaluation of process parameters and membranes for SO2 electrolysis / Andries Johannes Krüger

Krüger, Andries Johannes January 2015 (has links)
The environmentally unsafe by-products (CO2, H2S, NOx and SO2 for example) of using carbon-based fuels for energy generation have paved the way for research on cleaner, renewable and possibly cheaper alternative energy production methods. Hydrogen gas, which is considered as an energy carrier, can be applied in a fuel cell setup for the production of electrical energy. Although various methods of hydrogen production are available, sulphur-based thermochemical processes (such as the Hybrid Sulfur Process (HyS)) are favoured as alternative options for large scale application. The SO2 electrolyser is applied in producing H2 gas and H2SO4 by electrochemically converting SO2 gas and water. This study focused firstly on the evaluation of the performance of the SO2 electrolyser for the production of hydrogen and sulphuric acid, using commercially available PFSA (perfluorosulfonic acid) (Nafion®) as benchmark by evaluating i) various operating parameters (such as cell temperature and membrane thickness), ii) the influence of MEA (membrane electrode assembly) manufacturing parameters (hot pressing time and pressure) and iii) the effect of H2S as a contaminant. Subsequently, the suitability of novel PBI polyaromatic blend membranes was evaluated for application in an SO2 electrolyser. The parametric study revealed that, depending on the desired operating voltage and acid concentration, the optimisation of the operating conditions was critical. An increased cell temperature promoted both cell voltage and acid concentration while the use of thin membranes resulted in a reduced voltage and acid concentration. While an increased catalyst loading resulted in increased cell efficiency, such increase would result in an increase in manufacturing costs. Using electrochemical impedance spectroscopy at the optimised operating conditions, the MEA manufacturing process was optimised with respect to hot press pressure and time, while the effect of selected operating conditions was used to evaluate the charge transfer resistance, ohmic resistance and mass transport limitations. Results showed that the optimal hot pressing conditions were 125 kg.cm-2 and 50 kg.cm-2 for 5 minutes when using 25 and 10 cm2 active areas, respectively. The charge transfer resistance and mass transport were mostly influenced by the hot pressing procedure, while the ohmic resistance varied most with temperature. Applying the SO2 electrolyser in an alternative environment to the HyS thermochemical cycle, the effect of H2S on the SO2 electrolyser anode was investigated for the possible use of SO2 electrolysis to remove SO2 from mining off-gas which could contain H2S. Polarisation curves, EIS and CO stripping were used to evaluate the transient voltage response of various H2S levels (ppm) on cell efficiency. EIS confirmed that the charge transfer resistance increased as the H2S competed with the SO2 for active catalyst sites. Mass transport limitations were observed at high H2S levels (80 ppm) while the ECSA (electrochemical surface area obtained by CO stripping) showed a significant reduction of active catalyst sites due to the presence of H2S. Pure SO2 reduced the effective active area by 89% (which is desired in this case) while the presence of 80 ppm H2S reduced the active catalyst area to 85%. The suitability of PBI-based blend membranes in the SO2 electrolyser was evaluated by using chemical stability tests and electrochemical MEA characterisation. F6PBI was used as the PBI-containing base excess polymer which was blended with either partially fluorinated aromatic polyether (sFS001), poly(2,6-dimethylbromide-1,4-phenylene oxide (PPOBr) or poly(tetrafluorostyrene-4-phosphonic acid) (PWN) in various ratios. Some of the blend membranes also contained a cross-linking agent which was specifically added in an attempt to reduce swelling and promote cross-linking within the polymer matrix. The chemical stability of the blended membranes was confirmed by using weight and swelling changes, TGA-FTIR and TGA-MS. All membranes tested showed low to no chemical degradation when exposed to 80 wt% H2SO4 at 80°C for 120 h. Once the MEA doping procedure had been optimised, electrochemical characterisation of the PBI MEAs, including polarisation curves, voltage stepping and long term operation (> 24 h) was used to evaluate the MEAs. Although performance degradation was observed for the PBI membranes during voltage stepping, it was shown that this characterisation technique could be applied with relative ease, producing valuable insights into MEA stability. Since it is expected that the SO2 electrolyser will be operated under static conditions (cell temperature, pressure and current density) in an industrial setting (HyS cycle or for SO2 removal), a long term study was included. Operating the SO2 electrolyser under constant current density of 0.1 A cm-2 confirmed that PBI-based polyaromatic membranes were suitable, if not preferred, for the SO2 environment, showing stable performance for 170 hours. This work evaluated the performance of commercial materials while further adding insights into both characterisation techniques for chemical stability of polymer materials and electrochemical methods for MEA evaluation to current published literature. In addition to the characterisation techniques this study also provides ample support for the use of PBI-based materials in the SO2 electrolyser. / PhD (Chemistry), North-West University, Potchefstroom Campus, 2015
19

Evaluation of process parameters and membranes for SO2 electrolysis / Andries Johannes Krüger

Krüger, Andries Johannes January 2015 (has links)
The environmentally unsafe by-products (CO2, H2S, NOx and SO2 for example) of using carbon-based fuels for energy generation have paved the way for research on cleaner, renewable and possibly cheaper alternative energy production methods. Hydrogen gas, which is considered as an energy carrier, can be applied in a fuel cell setup for the production of electrical energy. Although various methods of hydrogen production are available, sulphur-based thermochemical processes (such as the Hybrid Sulfur Process (HyS)) are favoured as alternative options for large scale application. The SO2 electrolyser is applied in producing H2 gas and H2SO4 by electrochemically converting SO2 gas and water. This study focused firstly on the evaluation of the performance of the SO2 electrolyser for the production of hydrogen and sulphuric acid, using commercially available PFSA (perfluorosulfonic acid) (Nafion®) as benchmark by evaluating i) various operating parameters (such as cell temperature and membrane thickness), ii) the influence of MEA (membrane electrode assembly) manufacturing parameters (hot pressing time and pressure) and iii) the effect of H2S as a contaminant. Subsequently, the suitability of novel PBI polyaromatic blend membranes was evaluated for application in an SO2 electrolyser. The parametric study revealed that, depending on the desired operating voltage and acid concentration, the optimisation of the operating conditions was critical. An increased cell temperature promoted both cell voltage and acid concentration while the use of thin membranes resulted in a reduced voltage and acid concentration. While an increased catalyst loading resulted in increased cell efficiency, such increase would result in an increase in manufacturing costs. Using electrochemical impedance spectroscopy at the optimised operating conditions, the MEA manufacturing process was optimised with respect to hot press pressure and time, while the effect of selected operating conditions was used to evaluate the charge transfer resistance, ohmic resistance and mass transport limitations. Results showed that the optimal hot pressing conditions were 125 kg.cm-2 and 50 kg.cm-2 for 5 minutes when using 25 and 10 cm2 active areas, respectively. The charge transfer resistance and mass transport were mostly influenced by the hot pressing procedure, while the ohmic resistance varied most with temperature. Applying the SO2 electrolyser in an alternative environment to the HyS thermochemical cycle, the effect of H2S on the SO2 electrolyser anode was investigated for the possible use of SO2 electrolysis to remove SO2 from mining off-gas which could contain H2S. Polarisation curves, EIS and CO stripping were used to evaluate the transient voltage response of various H2S levels (ppm) on cell efficiency. EIS confirmed that the charge transfer resistance increased as the H2S competed with the SO2 for active catalyst sites. Mass transport limitations were observed at high H2S levels (80 ppm) while the ECSA (electrochemical surface area obtained by CO stripping) showed a significant reduction of active catalyst sites due to the presence of H2S. Pure SO2 reduced the effective active area by 89% (which is desired in this case) while the presence of 80 ppm H2S reduced the active catalyst area to 85%. The suitability of PBI-based blend membranes in the SO2 electrolyser was evaluated by using chemical stability tests and electrochemical MEA characterisation. F6PBI was used as the PBI-containing base excess polymer which was blended with either partially fluorinated aromatic polyether (sFS001), poly(2,6-dimethylbromide-1,4-phenylene oxide (PPOBr) or poly(tetrafluorostyrene-4-phosphonic acid) (PWN) in various ratios. Some of the blend membranes also contained a cross-linking agent which was specifically added in an attempt to reduce swelling and promote cross-linking within the polymer matrix. The chemical stability of the blended membranes was confirmed by using weight and swelling changes, TGA-FTIR and TGA-MS. All membranes tested showed low to no chemical degradation when exposed to 80 wt% H2SO4 at 80°C for 120 h. Once the MEA doping procedure had been optimised, electrochemical characterisation of the PBI MEAs, including polarisation curves, voltage stepping and long term operation (> 24 h) was used to evaluate the MEAs. Although performance degradation was observed for the PBI membranes during voltage stepping, it was shown that this characterisation technique could be applied with relative ease, producing valuable insights into MEA stability. Since it is expected that the SO2 electrolyser will be operated under static conditions (cell temperature, pressure and current density) in an industrial setting (HyS cycle or for SO2 removal), a long term study was included. Operating the SO2 electrolyser under constant current density of 0.1 A cm-2 confirmed that PBI-based polyaromatic membranes were suitable, if not preferred, for the SO2 environment, showing stable performance for 170 hours. This work evaluated the performance of commercial materials while further adding insights into both characterisation techniques for chemical stability of polymer materials and electrochemical methods for MEA evaluation to current published literature. In addition to the characterisation techniques this study also provides ample support for the use of PBI-based materials in the SO2 electrolyser. / PhD (Chemistry), North-West University, Potchefstroom Campus, 2015
20

Alimentation électrique d'un site isolé à partir d'un générateur photovoltaïque associé à un tandem électrolyseur/pile à combustible (batterie H2/O2) / Stand-Alone Power System based on photovoltaic generator and fuel cell/electrolyser association (H2/O2 battery)

Gailly, Frédéric 18 July 2011 (has links)
Les systèmes à énergies renouvelables couplés à un stockage hydrogène apportent des solutions nouvelles et innovantes à l'alimentation électrique des milieux peu ou non électrifiés. Le concept de batterie H2 qui équipe ce type de système est une forme de stockage originale qui apporte l'autonomie et l'indépendance électrique pour des longues durées (typiquement stockage saisonnier). Le fonctionnement de cette batterie H2 est le suivant : un électrolyseur produit des gaz (H2 et O2) avec les surplus d'énergie de la source renouvelable ; l'hydrogène, voire l'oxygène, est ensuite stocké dans des réservoirs pour être utilisé ultérieurement grâce à une pile à combustible lorsque la source renouvelable est insuffisante. Dans cette étude, nous nous intéresserons spécifiquement au couplage entre des générateurs photovoltaïques avec une batterie H2/O2 pour l'alimentation d'un site isolé sans interruption. Ces travaux de recherche s'inscrivent dans le projet ANR PEPITE (ANR-PanH 2007-2012) et ont été menés en partenariat avec HELION Hydrogen Power, le CEA Liten et l'Université de Corse. Le projet est également labellisé par les pôles de compétitivité CAPENERGIES et TENERRDIS. Tout d'abord, une réflexion générale s'appuyant sur les propriétés d'une batterie H2/O2 démontre la nécessité d'introduire une batterie (ici au plomb) pour garantir un fonctionnement instantané et sans interruption. Puis, une étude qualitative sur les architectures électriques possibles (bus de tension DC, AC…) a été menée pour s'achever sur une étude quantitative réalisée spécifiquement pour le projet PEPITE. Parallèlement à cela, différentes stratégies de gestions énergétiques ont été proposées afin d'utiliser les deux stockages dans les meilleures conditions, de limiter leur vieillissement ainsi que les pertes. Deux bancs d'essais à échelle réduite (un premier à bus DC et un second à bus AC) ont été réalisés au sein du laboratoire LAPLACE afin de valider les études et de préparer le prototype final qui sera testé sur le site de HELION Hydrogen Power au cours de l'été 2011. / Renewable energy systems coupled to a hydrogen storage bring new and innovative solutions to supply power to environments with little or no electricity. The concept of H2 battery which is a part of such system is a form of storage that gives autonomy and electric independence for long periods (typically seasonal storage). The operation of this H2 battery is this: an electrolyser produces gases (H2 and O2) with the extra energy from the renewable source. Hydrogen or oxygen is then stored in tanks for later use with a fuel cell when the renewable source becomes insufficient. In this study, we focus specifically on the coupling between photovoltaic arrays with a H2/O2 battery to supply power to a remote site without interruption. This work is part of the PEPITE Project, partially funded by the french National Research Agency (ANR-Panh 2007-2011) and was conducted in partnership with HELION Hydrogen Power, CEA-Liten and the University of Corsica. The project is also accredited by the CAPENERGIES and TENERRDIS clusters. First, a general discussion based on the properties of a H2/O2 battery demonstrates the need to introduce a secondary battery (lead in our case) to ensure an instant and uninterrupted operation. Then, a qualitative study on the possible electrical architectures (DC bus or AC bus) was conducted and resulted in a quantitative study conducted specifically for the PEPITE project. At the same time, various energy management strategies have been proposed to use both storage in the best conditions, limiting their losses and aging. Two small scale bench tests (one with a DC bus and a second with an AC bus) were performed in the LAPLACE laboratory to validate our strategies and prepare the final prototype which will be tested on the site of HELION Hydrogen Power during the summer of 2011.

Page generated in 0.0645 seconds