• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Construção de um acelerador de elétrons de 20KeV: aplicação ao estudo dos polímeros. / Development of a 20KeV electron gun for the study pf polymers.

Gilberto Marrega Sandonato 05 August 1983 (has links)
Construiu-se um acelerador de elétrons de baixa energia (Máximo de 20 KeV). Como fonte de elétrons utilizou-se um canhão de elétrons de cinescópio preto e branco, ou seja, com um único emissor termiônico. A energia do feixe eletrônico pode ser continuamente variada desde 0 a 20 KeV. A corrente eletrônica pode ser variada desde um valor mínimo de 10-12A a 3&#956A, permanecendo constante no tempo uma vez fixado o seu valor. Através da focalização ou desfocalização da imagem do feixe de elétrons, é possível variar-se a área irradiada desde um diâmetro mínimo de 1 milímetro a um máximo de 6 cm. A pressão final atingida nas câmaras de vácuo foi da ordem de 10-7Torr. Durante o funcionamento do canhão de elétrons, o cátodo do mesmo é danificado devido ao bombardeamento de íons em sua superfície. Para examinarmos o grau de danificação causado por este bombardeamento iônico, basta focalizarmos e examinarmos a imagem de feixe eletrônico sobre uma tela luminescente. Deve-se ressaltar que todo o acelerador de elétrons foi construído a partir de materiais e componentes totalmente nacionais. O acelerador de elétrons foi aplicado para estudar efeitos de irradiação de elétrons em Teflon usando-se o método do Split Faraday Cup. Foram medidas correntes transitórias de carga e descarga e determinaram-se o alcance médio dos elétrons e o valor da condutividade induzida pela radiação. / We have constructed a low energy electron accelerator (maximum energy 20 KeV). A black and white kinescope electron gun, with a single thermionic emitter was used as an electron source. The energy of electron beam can be changed continuously from 0 to 20 KeV. The intensity of the current can be changed from a minimum of 10-12A to a maximum of 3&#956A, and can be maintained constant in time after its value has been fixed. The irradiated area can be changed from a diameter of 1 millimeter to a maximum of 6 centimeter, by focalizing or defocalizing the image of electron beam. The final pressure reached in vacuum chambers was 10-7Torr. During operation the surface of cathode of electron gun is damaged by ion bombardment. The degree of damage can be checked if the cathode image is focalized and examined on a luminescent screen. The accelerator was used to study electron irradiation effects in Teflon, employing the method of the Split Faraday Cup. Transient charging and discharging currents were measured. The average range of electrons of the electrons and induced conductivity were determined.
12

Modelling and design of high compression electron guns for EBIS/T charge breeders

Mertzig, Robert 16 January 2017 (has links) (PDF)
In der vorliegenden Arbeit wird die Optimierung des REXEBIS-Ladungsbrüters an der ISOLDE präsentiert. Die REXEBIS in der aktuellen Konfiguration erzeugt eine Elektronenstromdichte in der Fallenregion bei 2 T von 200A/cm² und wird bis zu ihren physikalischen Grenzen optimiert. Um diese Begrenzung zu überwinden wurde eine neue Elektronenkanone, die HEC²-Elektronenkanone, in Kooperation mit BNL konstruiert und an der TestEBIS in Betrieb genommen. Diese Elektronenkanone verspricht eine Elektronenstromdichte von mehr als 10 kA/cm² bei 5T, welche die Ladungsbrütungszeit entscheidend verkürzt. In dieser Dissertation werden neuartige Simulationstechniken vorgestellt, welche die Inbetriebnahme durch Untersuchung der Mechaniken von auftretenden Verlustströmen beschreiben. Dazu wird der Elektronenkollektor der TestEBIS nach Kompatibilität bezüglich der HEC²-Elektronenkanone, die nahe derer Designwerte betrieben wird, evaluiert. Die gewonnenen Erfahrungen von der Inbetriebnahme der HEC²-Elektronenkanone und den etablierten, numerischen Techniken führen zur Entwicklung einer kleineren hochkomprimierenden Elektronenkanone für medizinische Anwedungen, die MEDeGUN. Diese Elektronenkanone sollte einen qualitativ hochwertigen Elektronenstrahl generieren, welcher eine Elektronenstromdichte von 7.5 kA/cm² in der Fallenregion bei 5 T axialen Magnetfeld erzeugt. Eine EBIS/T, ausgestattet mit einer MEDeGUN, wird bezüglich Pulsfrequenz und bereitgestellten Ionenstrom zu Hochfrequenz-Therapiezentren der zweiten Generation kompatibel sein. / In this thesis the optimization of the REXEBIS charge breeder at the ISOLDE facility is presented. REXEBIS in its current state provides a current density of 200A/cm² inside the trapping region at 2 T and will be optimized to the physical limit of its design. To overcome this limit a new electron gun, the HEC² gun, was designed in collaboration with the BNL and is in commission at TestEBIS. This electron gun promises a current density of >10 kA/cm², which decreases the charge breeding time significantly. This thesis presents novel simulation techniques supporting the commissioning phase by explaining the sources of occurring loss current and, in addition, evaluate the currently installed collector for compatibility with the HEC² gun operating at its design limit. The experience gained from the commission of the HEC2 gun and the established numerical techniques lead to the development of a smaller high-compression electron gun for medical purposes, the MEDeGUN. This electron gun should provide a high-quality beam, which generates a calculated current density of 7.5 kA/cm² inside the trapping region immersed in a 5 T axial magnetic field. An EBIS/T equipped with a MEDeGUN will be compatible regarding the pulse frequency and deliver the mandatory ion current required for second generation therapy centers.
13

Coulombovské interakce v elektronových svazcích / Coulomb Interactions in Electron Beams

Jánský, Pavel January 2010 (has links)
The thesis deals with numerical simulations of a hairpin thermionic electron gun, an electron source of the electron-beam welding machine. Simulations showed that the space charge in the electron gun has a significant influence on the beam current and electron trajectories. Simulation outputs are in a sufficient agreement with the experimental measurements.
14

Development and characterization of an electron gun for ultrafast electron microscopy

Bormann, Reiner 27 November 2015 (has links)
No description available.
15

Desenvolvimento de ferramenta computacional para projeto de canhões de elétrons com grade e shadow-grid, PPM e coletores aplicados em válvulas de micro-ondas de potência e caracterização experimental / Computational development tool for project of electron guns with grids and shadow-grids, PPM and colectors for microwave power valves and experimental characterization

Xavier, César Candido 15 December 2010 (has links)
Neste trabalho analisa-se o problema do transporte do feixe de elétrons em canhões de elétrons, estruturas periódicas de ímãs permanentes e em coletores de simples e múltiplos estágios. Essa análise é de relevância em projetos de dispositivos de micro-ondas de potência dos tipos amplicador klystron e válvula TWT. Determina-se a dinâmica das partículas a partir da solução da equação da trajetória que é derivada da força de Lorentz e da conservação de energia. A equação da trajetória obtida é diferencial de segunda ordem, não-linear e independentemente do tempo para o potencial generalizado. Utiliza-se o método de Runge-Kutta de 4a Ordem para integrar a equação da trajetória das partículas. Obtém-se o potencial escalar elétrico a partir da solução da equação de Poisson. Numericamente, obtêm-se os po- tenciais escalares elétricos e magnéticos, por meio do Método de Elementos Finitos (MEF). Ao longo do movimento de uma partícula, obtida a partir da solução da equação da trajetória, deposita-se carga elétrica. Utilizam-se macropartículas, uma vez que é praticamente impossível modelar cada partícula do problema, a partir do método Partícula na Célula (Particle in Cell - PIC). Neste caso, tem-se um problema acoplado para o potencial escalar elétrico e as trajetórias das macropartículas, uma vez que, as trajetórias das macropartículas dependem dos potenciais e estes, por sua vez, dependem das trajetórias. À convergência deste problema acoplado utiliza-se o Método das Aproximações Sucessivas (MAS). A plataforma desenvolvida, baseada nos métodos acima, compõe-se de duas ferramentas computacionais. A primeira, XMGUN, dedica-se ao projeto de: canhões de elétrons com grades e grades de sombreamento; e coletores de simples e múltiplos estágios considerando, ainda, a emissão de elétrons secundários. A segunda, XMAGUN, volta-se ao projeto de estruturas periódicas com ímãs permanentes. Afere-se o desempenho da ferramenta computacional XMGUN com o diodo plano de Pierce operando na condição em que a corrente é limitada pelas cargas espaciais. Por sua vez, verica-se o desempenho do XMAGUN por meio de simulações com estruturas do tipo PPM separadas pelo vácuo e na presença de pole pieces. Os resultados obtidos em todas as simulações convergiram satisfatoriamente para as soluções analíticas. Utilizando o XMGUN, projeta-se um canhão de elétrons com 30 kV de tensão de anodo e uma perveância de 1,37 Perv com capacidade de fornecer uma corrente elétrica de 7,1 A. Esse canhão tem uma malha com 2796 elementos e 5057 nós. As principais características geométricas do canhão de elétrons são: raio do catodo rc=14,6 mm; raio do disco do catodo rk =6,2 mm; e ângulo do eletrodo de focalização = 37. Neste caso, a velocidade transversal normalizada e o alcance do feixe zw observados são de 0,068 e 26,88 mm respectivamente. Obtém-se uma concordância superior a 93% em corrente e perveância com o EGUN. Utilizando, ainda, o XMGUN, são simulados coletores de simples e múltiplos estágios. O coletor de simples estágio apresenta 1612 nós e 2969 elementos, e o de 4 (quatro) estágios, 2496 nós e 4257 elementos. As tensões dos eletrodos do 1o, 2o, 3o e 4o estágio são de 9,45 kV, 8,65 kV, 6,45 kV e 3,45 kV respectivamente. Durante as simulações, devido à emissão de elétrons secundários, observa-se, para o coletor de simples estágio, macropartículas penetrando na região de deriva, fenômeno este indesejado, e não observado para o coletor de 4 (quatro) estágios. Considerando o XMAGUN, projeta-se um arranjo periódico com pole pieces e 5 (cinco) ímãs permanentes, capaz de fornecer um campo magnético, no centro da estrutura, de 0,42 T. Neste caso, a geometria do arranjo periódico obtida é: raio interno rm1 e externo rm2 do ímã permanente são iguais a 3,5 mm e 7,5 mm respectivamente; raio externo do pole piece r3 = 7,5 mm ; raio interno rf1 e externo rf2 da ponteira do pole piece são 1,6 mm e 3,05 mm respectivamente; espessura do ímã permanente T=2,95 mm; período magnético L =8,5 mm. A remanência do ímã permanente utilizada é de Br=0,85 T. A malha dessa estrutura periódica magnética apresenta pouco mais de 20.000 nós e 40.000 elementos. / In this paper we analyze the problem of transport of the electron beam in electron guns, periodic arrays of permanent magnets and collectors of simple and multiple stages. This analysis is of relevance in the design of power microwave devices such as klystron amplier and TWT valve. The dynamics of particles is determined from the solution of the equation of the trajectory that is derived from the Lorentz force and energy conservation law. The equation of the trajectory obtained is differential of second-order, non-linear and time independent for the generalized potential. It is used the Runge-Kutta 4th order method to integrate the equation of the trajectory of the particles. The electric scalar potential is obtained from the solution of the Poisson equation. Numerically, we obtain the electric and magnetic scalar potentials, using the Finite Element Method (FEM). Throughout the motion of a particle, obtained from the solution of the equation of the trajectory, electrical charge it is deposited. Macroparticles are used, since it is virtually impossible to model each particle of the problem, based on Particle in Cell scheme (Particle in Cell - PIC). In this case, there is a coupled problem for the electric scalar potential and the trajectories of the macroparticles, since these trajectories depend on the potential and the potential, in turn, depends on the trajectories. In order to abtain the convergence of this coupled problem, it used the Method of Successive Approximations (MSA). The platform developed, based on the above methods, consists of two computational tools. The rst, XMGUN, is dedicated to the project of: electron guns with grids and shadow-grids, and collectors of simple and multiple stages, where secondary electrons emission is considered. The second, XMAGUN, is used to the design of periodic permanent magnets structures. The XMGUN was benchmarked against the plan Pierce diode under space charge limited condiction. In turn, the XMAGUN was benchmarked against PPM like structures, separated by a vacuum and in the presence of pole pieces. The results, in all simulations, converged satisfactorily to the analytical solu- tions. Using XMGUN, it is designed an electron gun with 30 kV anode voltage, 1.37 Perv capable of supplying an electric current of 7.1 A. This gun has a mesh with 2796 elements and 5057 nodes. The main geometric characteristics of the electron gun are: cathode radius rc = 14.6 mm; cathode disc radius rk = 6.2 mm; and half cone angle = 37. In this case, the normalized transverse velocity and beam-waist distance from anode zw are 0.068 and 26.88 mm respectively. An agreement above 93% in current and perveance is found when compared with EGUN. XMGUN is also used to simulate single and multi stage collectors. The single-stage collector has 1612 nodes and 2969 elements, while the 4 (four) stages collector has 2496 nodes and 4257 we elements. The collector electrode voltages of the 1st, 2nd, 3rd and 4th stage are 9.45 kV 8.65 kV 3.45 kV 6.45 kV, respectively. During the simulations, due to yield of secondary electrons, for the single stage collector, it is observed macroparticles entering into the drift region, a phenomenon unwanted, and not observed for the 4 (four) stage collector. Whereas XMAGUN is projected at a periodic arrangement with pole pieces and 5 (ve) permanent magnets, capable of providing a magnetic eld in the center of the structure was 0.42 T. In this case, the geometry of the periodic arrangement is obtained: inner and outer radius of the permanent magnet rm1 = 3.5 mm and 7.5 mm respectively rm2 =; outer radius of the pole piece r3 = 7.5 mm, internal radius and external tip of the pole piece rf1=rf2 =1.6 mm and 3.05 mm respectively; permanent magnet thickness T = 2.95 mm magnetic period L = 8.5 mm. The remanence of the permanent magnet used is Br = 0.85 T. The net periodic structure of magnetic features little more than 20,000 nodes and 40,000 elements.
16

Desenvolvimento de ferramenta computacional para projeto de canhões de elétrons com grade e shadow-grid, PPM e coletores aplicados em válvulas de micro-ondas de potência e caracterização experimental / Computational development tool for project of electron guns with grids and shadow-grids, PPM and colectors for microwave power valves and experimental characterization

César Candido Xavier 15 December 2010 (has links)
Neste trabalho analisa-se o problema do transporte do feixe de elétrons em canhões de elétrons, estruturas periódicas de ímãs permanentes e em coletores de simples e múltiplos estágios. Essa análise é de relevância em projetos de dispositivos de micro-ondas de potência dos tipos amplicador klystron e válvula TWT. Determina-se a dinâmica das partículas a partir da solução da equação da trajetória que é derivada da força de Lorentz e da conservação de energia. A equação da trajetória obtida é diferencial de segunda ordem, não-linear e independentemente do tempo para o potencial generalizado. Utiliza-se o método de Runge-Kutta de 4a Ordem para integrar a equação da trajetória das partículas. Obtém-se o potencial escalar elétrico a partir da solução da equação de Poisson. Numericamente, obtêm-se os po- tenciais escalares elétricos e magnéticos, por meio do Método de Elementos Finitos (MEF). Ao longo do movimento de uma partícula, obtida a partir da solução da equação da trajetória, deposita-se carga elétrica. Utilizam-se macropartículas, uma vez que é praticamente impossível modelar cada partícula do problema, a partir do método Partícula na Célula (Particle in Cell - PIC). Neste caso, tem-se um problema acoplado para o potencial escalar elétrico e as trajetórias das macropartículas, uma vez que, as trajetórias das macropartículas dependem dos potenciais e estes, por sua vez, dependem das trajetórias. À convergência deste problema acoplado utiliza-se o Método das Aproximações Sucessivas (MAS). A plataforma desenvolvida, baseada nos métodos acima, compõe-se de duas ferramentas computacionais. A primeira, XMGUN, dedica-se ao projeto de: canhões de elétrons com grades e grades de sombreamento; e coletores de simples e múltiplos estágios considerando, ainda, a emissão de elétrons secundários. A segunda, XMAGUN, volta-se ao projeto de estruturas periódicas com ímãs permanentes. Afere-se o desempenho da ferramenta computacional XMGUN com o diodo plano de Pierce operando na condição em que a corrente é limitada pelas cargas espaciais. Por sua vez, verica-se o desempenho do XMAGUN por meio de simulações com estruturas do tipo PPM separadas pelo vácuo e na presença de pole pieces. Os resultados obtidos em todas as simulações convergiram satisfatoriamente para as soluções analíticas. Utilizando o XMGUN, projeta-se um canhão de elétrons com 30 kV de tensão de anodo e uma perveância de 1,37 Perv com capacidade de fornecer uma corrente elétrica de 7,1 A. Esse canhão tem uma malha com 2796 elementos e 5057 nós. As principais características geométricas do canhão de elétrons são: raio do catodo rc=14,6 mm; raio do disco do catodo rk =6,2 mm; e ângulo do eletrodo de focalização = 37. Neste caso, a velocidade transversal normalizada e o alcance do feixe zw observados são de 0,068 e 26,88 mm respectivamente. Obtém-se uma concordância superior a 93% em corrente e perveância com o EGUN. Utilizando, ainda, o XMGUN, são simulados coletores de simples e múltiplos estágios. O coletor de simples estágio apresenta 1612 nós e 2969 elementos, e o de 4 (quatro) estágios, 2496 nós e 4257 elementos. As tensões dos eletrodos do 1o, 2o, 3o e 4o estágio são de 9,45 kV, 8,65 kV, 6,45 kV e 3,45 kV respectivamente. Durante as simulações, devido à emissão de elétrons secundários, observa-se, para o coletor de simples estágio, macropartículas penetrando na região de deriva, fenômeno este indesejado, e não observado para o coletor de 4 (quatro) estágios. Considerando o XMAGUN, projeta-se um arranjo periódico com pole pieces e 5 (cinco) ímãs permanentes, capaz de fornecer um campo magnético, no centro da estrutura, de 0,42 T. Neste caso, a geometria do arranjo periódico obtida é: raio interno rm1 e externo rm2 do ímã permanente são iguais a 3,5 mm e 7,5 mm respectivamente; raio externo do pole piece r3 = 7,5 mm ; raio interno rf1 e externo rf2 da ponteira do pole piece são 1,6 mm e 3,05 mm respectivamente; espessura do ímã permanente T=2,95 mm; período magnético L =8,5 mm. A remanência do ímã permanente utilizada é de Br=0,85 T. A malha dessa estrutura periódica magnética apresenta pouco mais de 20.000 nós e 40.000 elementos. / In this paper we analyze the problem of transport of the electron beam in electron guns, periodic arrays of permanent magnets and collectors of simple and multiple stages. This analysis is of relevance in the design of power microwave devices such as klystron amplier and TWT valve. The dynamics of particles is determined from the solution of the equation of the trajectory that is derived from the Lorentz force and energy conservation law. The equation of the trajectory obtained is differential of second-order, non-linear and time independent for the generalized potential. It is used the Runge-Kutta 4th order method to integrate the equation of the trajectory of the particles. The electric scalar potential is obtained from the solution of the Poisson equation. Numerically, we obtain the electric and magnetic scalar potentials, using the Finite Element Method (FEM). Throughout the motion of a particle, obtained from the solution of the equation of the trajectory, electrical charge it is deposited. Macroparticles are used, since it is virtually impossible to model each particle of the problem, based on Particle in Cell scheme (Particle in Cell - PIC). In this case, there is a coupled problem for the electric scalar potential and the trajectories of the macroparticles, since these trajectories depend on the potential and the potential, in turn, depends on the trajectories. In order to abtain the convergence of this coupled problem, it used the Method of Successive Approximations (MSA). The platform developed, based on the above methods, consists of two computational tools. The rst, XMGUN, is dedicated to the project of: electron guns with grids and shadow-grids, and collectors of simple and multiple stages, where secondary electrons emission is considered. The second, XMAGUN, is used to the design of periodic permanent magnets structures. The XMGUN was benchmarked against the plan Pierce diode under space charge limited condiction. In turn, the XMAGUN was benchmarked against PPM like structures, separated by a vacuum and in the presence of pole pieces. The results, in all simulations, converged satisfactorily to the analytical solu- tions. Using XMGUN, it is designed an electron gun with 30 kV anode voltage, 1.37 Perv capable of supplying an electric current of 7.1 A. This gun has a mesh with 2796 elements and 5057 nodes. The main geometric characteristics of the electron gun are: cathode radius rc = 14.6 mm; cathode disc radius rk = 6.2 mm; and half cone angle = 37. In this case, the normalized transverse velocity and beam-waist distance from anode zw are 0.068 and 26.88 mm respectively. An agreement above 93% in current and perveance is found when compared with EGUN. XMGUN is also used to simulate single and multi stage collectors. The single-stage collector has 1612 nodes and 2969 elements, while the 4 (four) stages collector has 2496 nodes and 4257 we elements. The collector electrode voltages of the 1st, 2nd, 3rd and 4th stage are 9.45 kV 8.65 kV 3.45 kV 6.45 kV, respectively. During the simulations, due to yield of secondary electrons, for the single stage collector, it is observed macroparticles entering into the drift region, a phenomenon unwanted, and not observed for the 4 (four) stage collector. Whereas XMAGUN is projected at a periodic arrangement with pole pieces and 5 (ve) permanent magnets, capable of providing a magnetic eld in the center of the structure was 0.42 T. In this case, the geometry of the periodic arrangement is obtained: inner and outer radius of the permanent magnet rm1 = 3.5 mm and 7.5 mm respectively rm2 =; outer radius of the pole piece r3 = 7.5 mm, internal radius and external tip of the pole piece rf1=rf2 =1.6 mm and 3.05 mm respectively; permanent magnet thickness T = 2.95 mm magnetic period L = 8.5 mm. The remanence of the permanent magnet used is Br = 0.85 T. The net periodic structure of magnetic features little more than 20,000 nodes and 40,000 elements.
17

Emittance minimization at the ELBE superconducting electron gun

Möller, K., Arnold, A., Lu, P., Murcek, P., Teichert, J., Vennekate, H., Xiang, R. 26 June 2014 (has links) (PDF)
The transverse emittance is one of the most important quantities which characterize the quality of an electron source. For high quality experiments low beam emittance is required. By means of theoretical considerations and simulation calculations we have studied how the emittance of the Rossendorf superconducting radio-frequency photoelectron source (SRF gun) can be minimized. It turned out that neither a solenoid magnet nor the effect of space charge forces is needed to create a pronounced emittance minimum. The minimum appears by just adjusting the starting phase of the electron bunch with respect to the RF phase of the gun in a suitable way. Investigation of various correlations between the properties of the beam particles led to an explanation on how the minimum comes about. It is shown that the basic mechanism of minimization is the fact that the longitudinal properties of the particles (energy) are strongly influenced by the starting phase. Due to the coupling of the longitudinal and transverse degrees of freedom by the relativistic equation of motion the transverse degrees of freedom and thereby the emittance can be strongly influenced by the starting phase as well. The results obtained in this study will be applied to minimize the emittance in the commissioning phase of the SRF gun.
18

“Caracterização de feixes eletrônicos monoenergéticos de baixas energias”

Neves, Rafael Felipe Coelho 22 July 2011 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-28T14:15:00Z No. of bitstreams: 1 rafaelfelipecoelhoneves.pdf: 2969229 bytes, checksum: cff09b57af6263220760e29c729a1382 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-07T21:09:40Z (GMT) No. of bitstreams: 1 rafaelfelipecoelhoneves.pdf: 2969229 bytes, checksum: cff09b57af6263220760e29c729a1382 (MD5) / Made available in DSpace on 2017-08-07T21:09:40Z (GMT). No. of bitstreams: 1 rafaelfelipecoelhoneves.pdf: 2969229 bytes, checksum: cff09b57af6263220760e29c729a1382 (MD5) Previous issue date: 2011-07-22 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Em uma variedade de técnicas espectroscópicas de impacto de elétrons em amostras gasosas, é fundamental utilizar feixes de elétrons de baixas energias focalizados, colimados e monocromatizados. Sua intensidade deve ser tal que seja possível realizar a aquisição de dados em um tempo mínimo, apresentando boa estatística. O requisito da monocromatização é o que garante obter o máximo de informações espectroscópicas de dado espectro. É na região de baixas energias do elétron incidente que ocorrem importantes processos, tais como distorções na nuvem eletrônica do alvo, efeitos de polarização, efeitos de troca, captura eletrônica. Entretanto, é justamente nesta faixa de energia onde se observa maior dificuldade experimental de se trabalhar devido a alta sensibilidade do feixe eletrônico tanto incidente, como espalhado. Neste trabalho, desenvolvemos pela primeira vez no país um canhão de elétrons de baixas energias, produzindo feixes de elétrons monocromatizados. O canhão foi cuidadosamente caracterizado em termos da intensidade do feixe eletrônico incidente e sua monocromatização, atingindo-se valores de energia de 0,105 eV e intensidades de até 280 nA para feixes de 170 eV. / In a variety of spectroscopic techniques of electron impact on gaseous samples, it is essential to use electron beams of low energy focused, collimated and monochromatized. The electron beam intensity should be such that it is possible to perform data acquisition in minimal period time, with good statistics. The requirement of electron beam monochromatization ensures to get as much information of a spectrum. It is in the low-energy electron incident that important processes occur, such as distortions in the electron cloud of the target, polarization effects, exchange effects and electron capture. However, it is precisely in this energy range where the experiments are more difficult to run due to the high sensitivity of the incident and scattered electron beam. In this work, we developed first in this country an electron gun for low energies, producing monochromatized electron beams. The electron gun has been carefully characterized in terms of intensity of the incident electron beam and its capacity of monochromatization, reaching values of energy of 0.105 eV and beam intensities up to 280 nA of 170 eV.
19

Modelling and design of high compression electron guns for EBIS/T charge breeders

Mertzig, Robert 09 December 2016 (has links)
In der vorliegenden Arbeit wird die Optimierung des REXEBIS-Ladungsbrüters an der ISOLDE präsentiert. Die REXEBIS in der aktuellen Konfiguration erzeugt eine Elektronenstromdichte in der Fallenregion bei 2 T von 200A/cm² und wird bis zu ihren physikalischen Grenzen optimiert. Um diese Begrenzung zu überwinden wurde eine neue Elektronenkanone, die HEC²-Elektronenkanone, in Kooperation mit BNL konstruiert und an der TestEBIS in Betrieb genommen. Diese Elektronenkanone verspricht eine Elektronenstromdichte von mehr als 10 kA/cm² bei 5T, welche die Ladungsbrütungszeit entscheidend verkürzt. In dieser Dissertation werden neuartige Simulationstechniken vorgestellt, welche die Inbetriebnahme durch Untersuchung der Mechaniken von auftretenden Verlustströmen beschreiben. Dazu wird der Elektronenkollektor der TestEBIS nach Kompatibilität bezüglich der HEC²-Elektronenkanone, die nahe derer Designwerte betrieben wird, evaluiert. Die gewonnenen Erfahrungen von der Inbetriebnahme der HEC²-Elektronenkanone und den etablierten, numerischen Techniken führen zur Entwicklung einer kleineren hochkomprimierenden Elektronenkanone für medizinische Anwedungen, die MEDeGUN. Diese Elektronenkanone sollte einen qualitativ hochwertigen Elektronenstrahl generieren, welcher eine Elektronenstromdichte von 7.5 kA/cm² in der Fallenregion bei 5 T axialen Magnetfeld erzeugt. Eine EBIS/T, ausgestattet mit einer MEDeGUN, wird bezüglich Pulsfrequenz und bereitgestellten Ionenstrom zu Hochfrequenz-Therapiezentren der zweiten Generation kompatibel sein. / In this thesis the optimization of the REXEBIS charge breeder at the ISOLDE facility is presented. REXEBIS in its current state provides a current density of 200A/cm² inside the trapping region at 2 T and will be optimized to the physical limit of its design. To overcome this limit a new electron gun, the HEC² gun, was designed in collaboration with the BNL and is in commission at TestEBIS. This electron gun promises a current density of >10 kA/cm², which decreases the charge breeding time significantly. This thesis presents novel simulation techniques supporting the commissioning phase by explaining the sources of occurring loss current and, in addition, evaluate the currently installed collector for compatibility with the HEC² gun operating at its design limit. The experience gained from the commission of the HEC2 gun and the established numerical techniques lead to the development of a smaller high-compression electron gun for medical purposes, the MEDeGUN. This electron gun should provide a high-quality beam, which generates a calculated current density of 7.5 kA/cm² inside the trapping region immersed in a 5 T axial magnetic field. An EBIS/T equipped with a MEDeGUN will be compatible regarding the pulse frequency and deliver the mandatory ion current required for second generation therapy centers.
20

Emittance minimization at the ELBE superconducting electron gun

Möller, K., Arnold, A., Lu, P., Murcek, P., Teichert, J., Vennekate, H., Xiang, R. January 2014 (has links)
The transverse emittance is one of the most important quantities which characterize the quality of an electron source. For high quality experiments low beam emittance is required. By means of theoretical considerations and simulation calculations we have studied how the emittance of the Rossendorf superconducting radio-frequency photoelectron source (SRF gun) can be minimized. It turned out that neither a solenoid magnet nor the effect of space charge forces is needed to create a pronounced emittance minimum. The minimum appears by just adjusting the starting phase of the electron bunch with respect to the RF phase of the gun in a suitable way. Investigation of various correlations between the properties of the beam particles led to an explanation on how the minimum comes about. It is shown that the basic mechanism of minimization is the fact that the longitudinal properties of the particles (energy) are strongly influenced by the starting phase. Due to the coupling of the longitudinal and transverse degrees of freedom by the relativistic equation of motion the transverse degrees of freedom and thereby the emittance can be strongly influenced by the starting phase as well. The results obtained in this study will be applied to minimize the emittance in the commissioning phase of the SRF gun.

Page generated in 0.0492 seconds