• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 29
  • 7
  • 4
  • 1
  • 1
  • Tagged with
  • 433
  • 433
  • 230
  • 229
  • 216
  • 131
  • 126
  • 81
  • 73
  • 53
  • 53
  • 49
  • 46
  • 41
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

FABRICATION AND CHARACTERIZATION OF ORGANIC-INORGANIC HYBRID PEROVSKITE SOLAR CELLS

Sarvari, Hojjatollah 01 January 2018 (has links)
Solar energy as the most abundant source of energy is clean, non-pollutant, and completely renewable, which provides energy security, independence, and reliability. Organic-inorganic hybrid perovskite solar cells (PSCs) revolutionized the photovoltaics field not only by showing high efficiency of above 22% in just a few years but also by providing cheap and facile fabrication methods. In this dissertation, fabrication of PSCs in both ambient air conditions and environmentally controlled N2-filled glove-box are studied. Several characterization methods such as SEM, XRD, EDS, Profilometry, four-point probe measurement, EQE, and current-voltage measurements were employed to examine the quality of thin films and the performance of the PSCs. A few issues with the use of equipment for the fabrication of thin films are addressed, and the solutions are provided. It is suggested to fabricate PSCs in ambient air conditions entirely, to reduce the production cost. So, in this part, the preparation of the solutions, the fabrication of thin films, and the storage of materials were performed in ambient air conditions regardless of their humidity sensitivity. Thus, for the first part, the fabrication of PSCs in ambient air conditions with relative humidity above ~36% with and without moisture sensitive material, i.e., Li-TFSI are provided. Perovskite materials including MAPbI3 and mixed cation MAyFA(1-y)PbIxBr(1-x) compositions are investigated. Many solution-process parameters such as the spin-coating speed for deposition of the hole transporting layer (HTL), preparation of the HTL solution, impact of air and light on the HTL conductivity, and the effect of repetitive measurement of PSCs are investigated. The results show that the higher spin speed of PbI2 is critical for high-quality PbI2 film formation. The author also found that exposure of samples to air and light are both crucial for fabrication of solar cells with larger current density and better fill factor. The aging characteristics of the PSCs in air and vacuum environments are also investigated. Each performance parameter of air-stored samples shows a drastic change compared with that of the vacuum-stored samples, and both moisture and oxygen in air are found to influence the PSCs performances. These results are essential towards the fabrication of low-cost, high-efficiency PSCs in ambient air conditions. In the second part, the research is focused on the fabrication of high-efficiency PSCs using the glove-box. Both single-step and two-step spin-coating methods with perovskite precursors such as MAyFA(1-y)PbIxBr(1-x) and Cesium-doped mixed cation perovskite with a final formula of Cs0.07MA0.1581FA0.7719Pb1I2.49Br0.51 were considered. The effect of several materials and process parameters on the performance of PSCs are investigated. A new solution which consists of titanium dioxide (TiO2), hydrochloric acid (HCl), and anhydrous ethanol is introduced and optimized for fabrication of quick, pinhole-free, and efficient hole-blocking layer using the spin-coating method. Highly reproducible PSCs with an average power conversion efficiency (PCE) of 15.4% are fabricated using this solution by spin-coating method compared to the conventional solution utilizing both spin-coating with an average PCE of 10.6% and spray pyrolysis with an average PCE of 13.78%. Moreover, a thin layer of silver is introduced as an interlayer between the HTL and the back contact. Interestingly, it improved the current density and, finally the PCEs of devices by improving the adhesion of the back electrode onto the organic HTL and increasing the light reflection in the PSC. Finally, a highly reproducible fabrication procedure for cesium-doped PSCs using the anti-solvent method with an average PCE of 16.5%, and a maximum PCE of ~17.5% is provided.
352

PARAMETERS AFFECTING THE RESISTIVITY OF LP-EBID DEPOSITED COPPER NANOWIRES

Smith, Gabriel 01 January 2018 (has links)
Electron Beam Induced Deposition (EBID) is a direct write fabrication process with applications in circuit edit and debug, mask repair, and rapid prototyping. However, it suffers from significant drawbacks, most notably low purity. Work over the last several years has demonstrated that deposition from bulk liquid precursors, rather than organometallic gaseous precursors, results in high purity deposits of low resistivity (LPEBID). In this work, it is shown that the deposits resulting from LP-EBID are only highly conductive when deposited at line doses below 25μC/cm. When the dose exceeds this value, the resulting structure is highly porous providing a poor conductive pathway. It is also shown that beam current has no significant effect on the resistivity of the deposits. Nanowires with resistivity significantly lower than the previous best result of 67μΩ•cm were achieved, with the lowest resistivity being only 6.6μΩ•cm, only a factor of 4 higher than that bulk copper of 1.7μΩ•cm.
353

Fabrication and Characterization of Planar-Structure Perovskite Solar Cells

Liu, Guoduan 01 January 2019 (has links)
Currently organic-inorganic hybrid perovskite solar cells (PSCs) is one kind of promising photovoltaic technology due to low production cost, easy fabrication method and high power conversion efficiency. Charge transport layers are found to be critical for device performance and stability. A traditional electron transport layer (ETL), such as TiO2 (Titanium dioxide), is not very efficient for charge extraction at the interface. Compared with TiO2, SnO2 (Tin (IV) Oxide) possesses several advantages such as higher mobility and better energy level alignment. In addition, PSCs with planar structure can be processed at lower temperature compared to PSCs with other structures. In this thesis, planar-structure perovskite solar cells with SnO2 as the electron transport layer are fabricated. The one-step spin-coating method is employed for the fabrication. Several issues are studied such as annealing the samples in ambient air or glovebox, different concentration of solution used for the samples, the impact of using filter for solutions on samples. Finally, a reproducible fabrication procedure for planer-structure perovskite solar cells with an average power conversion efficiency of 16.8%, and a maximum power conversion efficiency of 18.1% is provided.
354

Design and Analysis of Modular Axial Flux Switched Reluctance Motor

Shiwakoti, Rochak 05 August 2019 (has links)
This thesis presents a new modular structure of the axial flux Switched Reluctance Motor (SRM). The design consists of four stator disks with each adjacent disk rotated 30 degrees apart and four rotor disks connected to a common shaft. The proposed design aims to reduce the unwanted radial force, mitigate the torque ripple, and improve the efficiency. The modular structure distributes the radial force and torque strokes along the axial length of the motor, potentially damping the torque pulsation. In addition, the modular structure would deliver the rating power at a lower current level, reducing the overall ohmic loss. Moreover, if a fault occurs on a motor disk or its control unit, the motor would still operate through other disks, increasing the reliability of the system. To verify the effectiveness of the proposed design, the magneto-static and transient performance of the motor are compared with the conventional single layer structure using 3-D Finite-Element (FE) software tool to see that the proposed motor performs better with lower torque ripple and lower radial force than a conventional single layer structure.
355

A 40 GHz Power Amplifier Using a Low Cost High Volume 0.15 um Optical Lithography pHEMT Process

Mays, Kenneth W. 04 January 2013 (has links)
The demand for higher frequency applications is largely driven by bandwidth. The evolution of circuits in the microwave and millimeter frequency ranges always demands higher performance and lower cost as the technology and specification requirements evolve. Thus the development of new processes addressing higher frequencies and bandwidth requirements is essential to the growth of any semiconductor company participating in these markets. There exist processes which can perform in the higher frequency design space from a technical perspective. However, a cost effective solution must complement the technical merits for deployment. Thus a new 0.15 um optical lithography pHEMT process was developed at TriQuint Semiconductor to address this market segment. A 40 GHz power amplifier has been designed to quantify and showcase the capabilities of this new process by leveraging the existing processing knowledge and the implementation of high frequency scalable models. The three stage power amplifier was designed using the TOM4 scalable depletion mode FET model. The TriQuint TQP15 Design Kit also implements microstrip transmission line models that can be used for evaluating the interconnect lines and matching networks. The process also features substrate vias and the thin film resistor and MIM capacitor models which utilize the capabilities of the BCB process flow. During the design stage we extensively used Agilent ADS program for circuit and EM simulation in order to optimize the final design. Special attention was paid to proper sizing of devices, developing matching circuits, optimizing transmission lines and power combining. The final design exhibits good performance in the 40 GHz range using the new TQP15 process. The measured results show a gain of greater than 13 dB under 3 volt drain voltage and a linear output power of greater than 28 dBm at 40 GHz. The 40 GHz power amplifier demonstrates that the new process has successfully leveraged an existing manufacturing infrastructure and has achieved repeatability, high volume manufacturing, and low cost in the millimeter frequency range.
356

Optical Spectroscopy of Wide Bandgap Semiconductor Heterostructures and Group-IV Alloy Quantum Dots

Nakagawara, Tanner A 01 January 2017 (has links)
Efficient and robust blue InGaN multiple quantum well (MQW) light emitters have become ubiquitous; however, they still have unattained theoretical potential. It is widely accepted that “localization” of carriers due to indium fluctuations theoretically enhance their efficiency by moderating defect-associated nonradiative recombination. To help develop a complete understanding of localization effects on carrier dynamics, this thesis explores degree of localization in InGaN MQWs and its dependence on well thickness and number of wells, through temperature and power dependent photoluminescence measurements. Additionally, silicon-compatible, nontoxic, colloidally synthesizable 2-5 nm Ge1-xSnx alloy quantum-dots (QDs) are explored for potential visible to near-IR optoelectronic applications. While bulk Ge is an indirect gap material, QD confinement allows enhanced direct transitions, and alloying with Sn improves transition oscillator strengths. Temperature dependent steady-state and time-resolved photoluminescence reveal relaxation pathways involving bright/dark excitons and surface states in Ge1-xSnx QDs, showing their great potential for future use.
357

STRAINTRONIC NANOMAGNETIC DEVICES FOR NON-BOOLEAN COMPUTING

Abeed, Md Ahsanul 01 January 2019 (has links)
Nanomagnetic devices have been projected as an alternative to transistor-based switching devices due to their non-volatility and potentially superior energy-efficiency. The energy efficiency is enhanced by the use of straintronics which involves the application of a voltage to a piezoelectric layer to generate a strain which is ultimately transferred to an elastically coupled magnetostrictive nanomaget, causing magnetization rotation. The low energy dissipation and non-volatility characteristics make straintronic nanomagnets very attractive for both Boolean and non-Boolean computing applications. There was relatively little research on straintronic switching in devices built with real nanomagnets that invariably have defects and imperfections, or their adaptation to non-Boolean computing, both of which have been studied in this work. Detailed studies of the effects of nanomagnet material fabrication defects and surface roughness variation (found in real nanomagnets) on the switching process and ultimately device performance of those switches have been performed theoretically. The results of these studies place the viability of straintronics logic (Boolean) and/or memory in question. With a view to analog computing and signal processing, analog spin wave based device operation has been evaluated in the presence of defects and it was found that defects impact their performance, which can be a major concern for the spin wave based device community. Additionally, the design challenge for low barrier nanomagnet which is the building block of binary stochastic neurons based probabilistic computing device in case of real nanomagnets has also been investigated. This study also cast some doubt on the efficacy of probabilistic computing devices. Fortunately, there are some non-Boolean applications based on the collective action of array of nanomagnets which are very forgiving of material defects. One example is image processing using dipole coupled nanomagnets which is studied here and it showed promising result for noise correction and edge enhancement of corrupted pixels in an image. Moreover, a single magneto tunnel junction based microwave oscillator was proposed for the first time and theoretical simulations showed that it is capable of better performance compared to traditional microwave oscillators. The experimental part of this work dealt with spin wave modes excited by surface acoustic waves, studied with time resolved magneto optic Kerr effect (TR-MOKE). New hybrid spin wave modes were observed for the first time. An experiment was carried out to emulate simulated annealing in a system of dipole coupled magnetostrictive nanomagnets where strain served as the simulated annealing agent. This was a promising outcome and it is the first demonstration of the hardware variant of simulated annealing of a many body system based on magnetostrictive nanomagnets. Finally, a giant spin Hall effect actuated surface acoustic wave antenna was demonstrated experimentally. This is the first observation of photon to phonon conversion using spin-orbit torque and although the observed conversion efficiency was poor (1%), it opened the pathway for a new acoustic radiator. These studies complement past work done in the area of straintronics.
358

RESONANT ACOUSTIC WAVE ASSISTED SPIN-TRANSFER-TORQUE SWITCHING OF NANOMAGNETS

Roe, Austin R 01 January 2019 (has links)
We studied the possibility of achieving an order of magnitude reduction in the energy dissipation needed to write bits in perpendicular magnetic tunnel junctions (p-MTJs) by simulating the magnetization dynamics under a combination of resonant surface acoustic waves (r-SAW) and spin-transfer-torque (STT). The magnetization dynamics were simulated using the Landau-Lifshitz-Gilbert equation under macrospin assumption with the inclusion of thermal noise. We studied such r-SAW assisted STT switching of nanomagnets for both in-plane elliptical and circular perpendicular magnetic anisotropy (PMA) nanomagnets and show that while thermal noise affects switching probability in in-plane nanomagnets, the PMA nanomagnets are relatively robust to the effect of thermal noise. In PMA nanomagnets, the resonant magnetization dynamics builds over few 10s of cycles of SAW application that drives the magnetization to precess in a cone with a deflection of ~45⁰ from the perpendicular direction. This reduces the STT current density required to switch the magnetization direction without increasing the STT application time or degrading the switching probability in the presence of room temperature thermal noise. This could lead to a pathway to achieve energy efficient switching of spin-transfer-torque random access memory (STT-RAM) based on p-MTJs whose lateral dimensions can be scaled aggressively despite using materials with low magnetostriction by employing resonant excitation to drive the magnetization away from the easy axis before applying spin torque to achieve a complete reversal.
359

Thin Film Based Biosensors for Point of Care Diagnosis of Cortisol

Pasha, Syed Khalid 05 November 2018 (has links)
This dissertation explores the different ways to create thin film-based biosensors that are capable of rapid and label-free detection of cortisol, a non-specific biomarker closely linked to stress, within the physiological range of 10pM to 10 uM. Increased cortisol levels have been linked to stress-related diseases, such as chronic fatigue syndrome, irritable bowel syndrome, and post-traumatic stress disorder. It also plays a role in the suppression of the immune system as well. Therefore, accurate measurement of cortisol in saliva, serum, plasma, urine, sweat, and hair, is clinically significance to predict physical and mental diseases. In this dissertation, thin film-based electrochemical immunosensors were fabricated using a self-assembled monolayer (SAM) functionalized by cortisol specific antibodies to detect cortisol at 10 pM level sensitivities in the presence of a redox probe. The fabricated electrochemical cortisol immunosensors were able to detect cortisol in human saliva samples and the outcomes were validated using the standard Enzyme Linked Immuno Sorbent Assay (ELISA) technique. With the aim of improving signal amplification and label-free cortisol detection, copper nanoparticles were incorporated on screen-printed carbon electrodes (SPCE) for the fabrication of electrochemical cortisol immunosensor. This SPCE-based sensor showed a sensitivity of 4.21µA/M and the limit of detection 6.6nM. Both the SAM and SPCE-based immunosensors were not thermally stable due to the instability of antibodies at room temperature. To address this issue, an antibody-free immunosensor was fabricated. Molecular Imprinted Polymer (MIP) was used to template the target cortisol molecule. The MIP-based sensing platform was prepared using polypyrrole, a thermally stable conducting polymer. The conductivity of the polymer ensured good electrical performance. The polypyrrole-based MIP was synthesized by means of electrochemical polymerization and was used to detect cortisol within the physiological range at room temperature. MIP-based sensors exhibited the detection limit of 1 pM, and were cost-effective, easy to fabricate, temperature stable, and reusable. The sensing performance of the resulting sensors was comparable to those of commercially available technologies, such as ELISA. Aiming to perform cortisol sensing at point-of-care (POC), an Extended Gate Field Effect Transistor (EGFET) was integrated with a developed MIP cortisol sensor. The as developed MIP-EGFET sensor was used to detect the cortisol concentration in the range of 1 pM to 100 nM. A few of the major advantages of the developed sensor are its ability to provide a direct readout and simpler electronic systems, which are necessary for miniaturized Point of Care devices.
360

Electronic Properties of Nanostructures from Hydrostatics and Hydrodynamics

Le, Hung Manh, n/a January 1997 (has links)
The behaviour of electrons in nanostructures such as quantum wells is of interest for the design of new electronic and electro-optic devices, and also for exploration of basic many-body physics. This thesis develops and tests improved methods for describing such electronic behaviour. The system used for this work was the parabolic quantum well (PQW), an important special system which has recently attracted much experimental and theoretical attention. We firstly report self-consistent nonlinear groundstate solutions of the Poisson equation together with the Thomas-Fermi (TF) hydrostatic equations. In contrast to most previous solutions, all the electron density profiles were inhomogeneous and continuous. We also added a von Weizsacker term with and without the exchange/exchange-correlation to the above treatment, using a novel numerical approach allowing for wider electron gases than previously possible. We also report for the first time the effects of spatially varying effective mass and dielectric function in theories of this type. To investigate infrared response of these systems, we apply new hydrodynamic theories recently proposed by Dobson. By using this type of theory, we simultaneously satisfy the Harmonic Potential Theorem (extended generalized Kohn theorem) and obtain the correct 2D plasmon dispersion, as well as obtaining the correct spacing of standing plasmons. Other inhomogeneous hydrodynamic theories do not achieve this. We also showed analytically an exact solution for a plasmon mode at the Kohn frequency in addition to one found in the Harmonic Potential Theorem. An open hydrodynamic theory was then developed based on this type of mode. Numerical application of Kohn Frequency Theorem theory was shown and the results were compared with other existing hydrodynamic theories.

Page generated in 0.0573 seconds