• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 12
  • Tagged with
  • 127
  • 127
  • 124
  • 124
  • 123
  • 123
  • 123
  • 24
  • 23
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Konstruktion av Industriellt Vibrationsmätningssystem med signalbehandling baserad på Digitala Vågfilter av Lattice-struktur / Construction of Industrial Vibration Measurement System with signal-processing based on Lattice Wave Digital filter structures

Tegelid, Simon, Åström, Jonas January 2010 (has links)
In this bachelor thesis a complete prototype of an industrial vibration measurement platform has been developed. By measuring a number of variables such as acceleration, temperature and speed conclusions can be drawn on machinery health. The aim is to evaluate hardware and software solutions for a possible future product. Based on a requirement specification a proper hardware design has be developed. The hardware consists of a four-layer PCB with an ARM Cortex-M3 microcontroller and about 250 other components. The PCB was designed, assembled, tested and finally housed in a box. Measures have been taken to protect the prototype against external disturbances such as inappropriate supply voltages and transients on the input stages.Software has been written for the microcontroller to perform the various measurements required by the prototype. These include RMS, integration and filtering. Special attention was paid to the latter by implementing filters based on lattice wave digital structures. This structure results in a very efficient implementation. Consideration is taken to be able to generate arbitrary filters independent of the characteristics and design method. To save time the microcontroller implements all the algorithms without any floating point numbers.Furthermore, both hardware and software are adapted for future industrial use. The finished prototype supports a number of communication interfaces in which Modbus (RS-485) and current loop communication can be mentioned.The final result is a very good performing platform with strong future potential.The work was commissioned by the consulting firm Syncore Technologies AB at their office in Mjärdevi, Linköping. The project has, in total, taken 10 weeks and occurred during spring 2010.In this bachelor thesis a complete prototype of an industrial vibration measurement platform has been developed. By measuring a number of variables such as acceleration, temperature and speed conclusions can be drawn on machinery health. The aim is to evaluate hardware and software solutions for a possible future product. Based on a requirement specification a proper hardware design has be developed. The hardware consists of a four-layer PCB with an ARM Cortex-M3 microcontroller and about 250 other components. The PCB was designed, assembled, tested and finally housed in a box. Measures have been taken to protect the prototype against external disturbances such as inappropriate supply voltages and transients on the input stages.Software has been written for the microcontroller to perform the various measurements required by the prototype. These include RMS, integration and filtering. Special attention was paid to the latter by implementing filters based on lattice wave digital structures. This structure results in a very efficient implementation. Consideration is taken to be able to generate arbitrary filters independent of the characteristics and design method. To save time the microcontroller implements all the algorithms without any floating point numbers.Furthermore, both hardware and software are adapted for future industrial use. The finished prototype supports a number of communication interfaces in which Modbus (RS-485) and current loop communication can be mentioned.The final result is a very good performing platform with strong future potential.The work was commissioned by the consulting firm Syncore Technologies AB at their office in Mjärdevi, Linköping. The project has, in total, taken 10 weeks and occurred during spring 2010.
52

Printed electronics : Implementation of WORM memory in a RF-antitheft system

Hammarling, Krister January 2009 (has links)
Current printable memory technology are not suited for mass produc‐tion. With new inexpensive printed memory, it will be possible to manufacture cheap surveillance tags that are capable to tell the user if something has happened within a timeline. This project is within the ITC FrameProgram 7 founded project PriMeBits. The goal is to imple‐ment a write once read many memory (WORM) onto an RF‐tag together with a sensor that can sense wetness, which can be detected by EAS antitheft systems. Pre researches have been done in the fields printed capacitance, coils and WORMs, all printed with silver ink. Before implementation of a WORM onto a tag simulations and laboratory tests with adjustable resistances were made. Two different circuit models are simulated and tested. When connected to a tag and the WORM is un‐programmed, the EAS system should not trigger an alarm. But if the WORM is programmed by the sensor, the alarm should trigger. Results show that capacitances and WORMs are printable with this technique but coils are not due to high inner resistance. The simulations show that a tag built as an LCCR‐circuit is the best choice. This is also confirmed with tests done with real resistors. With WORMs connected to a tag the results show that approximately 70% of them work as intended, this is because the WORMs as of now are not completely developed. The conclusion of this project is that it is possible to implement a WORM onto a tag with further research, to make an inexpensive surveillance tag. / PriMeBits
53

Frame Allocation and Scheduling for Relay Networks in the LTE Advanced Standard

Roth, Stefan January 2010 (has links)
The use of relays is seen as a promising way to extend cell coverage and increase rates in LTE Advanced networks. Instead of increasing the number of base stations (BS), relays with lower cost could provide similar gains. A relay will have a wireless link to the closest BS as only connection to the core network and will cover areas close to the cell edge or other areas with limited rates. Performing transmissions in several hops (BS-relay & relay-user) requires more radio resources than using direct transmission. This thesis studies how the available radio resources should be allocated between relays and users in order to maximize throughput and/or fairness. Time and frequency multiplexed backhaul is investigated under a full buffer traffic assumption. It is shown that the system will be backhaul limited and that the two ways of multiplexing will perform equally when maximising throughput and/or fairness. The analysis results in a set of throughput/fairness suboptimal solutions, dependant on how many relays are used per cell. The results are verified by simulations, which also show the limiting effects on throughput caused by interference between relays. It is also analysed how the resource allocation should be done given non-fullbuffer traffic. A resource allocation that minimises packet delay given a certain number of relays per cell is presented. The analysis is based on queuing theory. Finally some different schedulers and their suitability for relay networks are discussed. Simulation results are shown, comparing the throughput and fairness of Round Robin, Weighted Round Robin, Proportional Fairness and Weighted Proportional Fairness schemes. It is shown that allocating the resource among the relays according to the number of users served by the relays improves the fairness.
54

Rapid prototyping : -development and evaluation of Field Oriented Control using LabView FPGA

Eriksson, Joakim, Hermansen, Luciano January 2011 (has links)
This report describes the work of developing a rapid prototyping system for Permanent Magnet Synchronous Motors using LabView FPGA at ABB Corporate Research in Västerås. The aim of the rapid prototyping system is to serve as an additional tool to simulation when evaluating new control algorithms for mechatronic applications. Using LabView FPGA, Field Oriented Control is implemented for a single axis and a multi axis system on the sbRIO 9632 development board from National Instruments. The aim is to develop a controller for multiple axes while optimizing the use of system resources. The report presents the work of testing and evaluating the implementation of the single axis system. The system will be tested in a laboratory test bench to verify its performance. The laboratory results are compared and verified against MATLAB/Simulink simulations of the system. Using the results from the single axis tests as a benchmark the multi axis system is verified and evaluated. The implemented systems proved to provide good regulation of the motor currents for both the single axis and the multi axis system.
55

A comparative study of Nanowire-based InP and Planar ITO/InP Photodetectors

Hajji, Maryam January 2011 (has links)
Photodetectors are a kind of semiconductor devices that convert incoming light to an electrical signal. Photodetectors have different applications in sensors and fiber optic communication systems, and medical diagnosis etc. In this project  Fourier Transform Infrared (FTIR) Spectroscopy is used to investigate a new version  of photodiodes for near-infrared radiation that is based on self-assembled semiconductor nanowires (NWs) which are grown directly on the substrate without any epi-layer. The spectrally resolved photocurrent (at different applied biases) and IV curves (in darkness and illumination) for different temperatures have been studied, respectively. The thesis work also includes a comparison to a planar photodetector based on Indium Tin Oxide (ITO) deposited directly on an InP substrate.
56

Cylindrical Surface Analysis with White Light Interferometry

Bora, Ethem January 2011 (has links)
At present, one of the big challenges is to develop a precise surface measurement method for mechanical parts. Especially, to study cylindrical surface, the cause of many difficulties because of its geometry shape. This thesis presents a quite good solution for analyzing topography of cylindrical surface with White Light Interferometry optical system which is one of the important and suitable tools in optics. In the construction period, the aim was to build a system which can be easily mounted on the sample. This is done by a very simple and compact design that also enables us to use it in research laboratories. In the project, a cylindrical surface analysis is achieved by taking subsequent images with different nano-scale distance from the sample and stitched the acquired images. To achieve this implementation, subsequent images with the highest intensity are first determined and then located in a single image. In the stitching process, cross correlation method that is extremely useful to find out relative point of the images is used to merge the acquired images. Additionally, stitching process is helped us to extend the area where research can be done. In the project, MATLAB & LABVIEW are used for analyzing the images and controlling the motors, respectively.
57

Amplification circuits based on electrochemical transistors

Khan, Zia Ullah January 2009 (has links)
Electrochemical Transistor(ECT) was reported by David Nilsson in 2002. Later,its dimensios were specified and a SPICE model was developed. The main purpose of this diploma work is to check the performance of electrochemical transistors in amplifier circuits. Simple amplifier circuits were simulated using SPICE model of ECT. Lateral and Vertical structures of electrochemical transistors were patterned on orgacon sheet(provided by AGFA),with various electrolytes(EG010,MS-HEC &amp; MS-L). Characteric curves and time responses of these transistors were studied and then were then used as an active component in single amplifier circuits. Screen printed ECT's were also checked with the best available electrolyte. Behaviour of self made and screen printed ECT's were compared on the basis of on-off ratio,slew rate,frequency response and gain. Screen printed transistors showed promising results having less deterioration with time  but  till  an  an  input  signal  frequency  of  2Hz  only. Mismatch with simulation results and Shockley's equation were other findings after data analysis. <img src="file:///C:/DOCUME%7E1/zia/LOCALS%7E1/Temp/moz-screenshot.jpg" /><img src="file:///C:/DOCUME%7E1/zia/LOCALS%7E1/Temp/moz-screenshot-1.jpg" />
58

Direktuppspelande video från Umeå kommuns webbplats : En undersökning om Umeå kommuns förutsättningar att sända direktuppspelande video över Internet från en mobil studio

Ivarsson, Jörgen January 2005 (has links)
Användningen av strömmande media ökar explosionsartat och är nära knu- tet till utbyggnaden av bredband. Intresset för direktuppspelande video bland kommuner, stat och landsting har ökat på senare år. I dag sänder bl.a. Region Skåne, Uddevalla-, Sigtuna- och Bollnäs kommun direktupp- spelande video från sina kommunfullmäktige.Den här rapporten handlar om Umeå kommuns förutsättningar att sända direktuppspelande video från sin webbplats. Min uppgift blev att undersöka vilka krav kan ställas på en myndighet som sänder video både när det gäller teknik och tillgänglighet.En fördjupning om multicasting görs, då det är en teknik för att drastiskt minska behovet av bandbredd för direktsänd video. Dessutom tas en mobil utrustning fram för att spela in och sända direktuppspelande video över Internet.Avslutningsvis görs en testsändning från den mobila studion.
59

Characterization of electrical properties in 4H-SiC by imaging techniques

Österman, John January 2004 (has links)
<p>4H-SiC has physical properties supremely suited for a variety of high power, high frequency and high temperature electronic device applications. To fully take advantage of the material's potential, several problems remain to be solved. Two of the most important are (1) the characterization and understanding of crystallographic defects and their electrical impact on device performance, and (2) the introduction of acceptor dopants, their activation and control of the final distribution of charge carriers. Two main experimental methods have been employed in this thesis to analyze 4H-SiC material with respect to the issues (1) and (2): electron beam induced current (EBIC) and scanning spreading resistance microscopy (SSRM), respectively. </p><p>EBIC yields a map of electron-hole-pairs generated by the electron beam of a scanning electron microscope and collected in the depleted region around a junction. EBIC is conducted in two modes. In the first mode the EBIC contrast constitutes a map of minority carrier diffusion lengths. Results from these measurements are compared to white beam syncrotron x-ray topography and reveal a one-to-one correlation between lattice distortions and the electron diffusion length in n+p 4H-SiC diodes. In the second EBIC mode, the junction is highly reverse biased and local avalanche processes can be studied. By correlating these EBIC results with other techniques it is possible to separate defects detrimental to device performance from others more benign. </p><p>SSRM is a scanning probe microscopy technique that monitors carrier distributions in semiconductors. The method is for the first time successfully applied to 4H-SiC and compared to alternative carrier profiling techniques; spreading resistance profiling (SRP), scanning electron microscopy (SEM) and scanning capacitance microscopy (SCM). SCM successfully monitors the doping levels and junctions, but none of these techniques fulfill the requirements of detection resolution, dynamic range and reproducibility. The SSRM current shows on the other hand a nearly ideal behavior as a function of aluminum doping in epitaxially grown samples. However, the I-V dependence is highly non-linear and the extremely high currents measured indicate a broadening of the contact area and possibly an increased ionization due to sample heating. Finite element calculations are performed to further elucidate these effects. </p><p>SSRM is also applied to characterize Al implantations as a function of anneal time and temperature. The Al doping profiles are imaged on cleaved cross-sections and the measured SSRM current is integrated with respect to depth to obtain a value of the total activation. The evaluation of the annealing series shows a continuous increase of the activation even up to 1950 °C. Other demonstrated SSRM applications include local characterization of electrical field strength in passivating layers of Al2O3, and lateral diffusion and doping properties of implanted boron.</p>
60

Fabrication and Characterization of 3C- and4H-SiC MOSFETs

Esteve, Romain January 2011 (has links)
During the last decades, a global effort has been started towards the implementation of energy efficient electronics. Silicon carbide (SiC), a wide band-gap semiconductor is one of the potential candidates to replace the widespread silicon (Si) which enabled and dominates today’s world of electronics. It has been demonstrated that devices based on SiC lead to a drastic reduction of energy losses in electronic systems. This will help to limit the global energy consumption and the introduction of renewable energy generation systems to a competitive price. Active research has been dedicated to SiC since the 1980’s. As a result, a mature SiC growth technology has been developed and 4 inch SiC wafers are today commercially available. Research and development activities on the fabrication of SiC devices have also been carried out and resulted in the commercialization of SiC devices. In 2011, Schottky barrier diodes, bipolar junction transistors, and junction field effect transistors can be purchased from several electronic component manufacturers. However, the device mostly used in electronics, the metal-oxide-semiconductor field effect transistor (MOSFET) is only recently commercially available in SiC. This delay is due to critical technology issues related to reliability and stability of the device, which still challenge many researchers all over the world. This thesis summarizes the main challenges of the SiC MOSFET fabrication process. State of the art technology modules like the gate stack formation, the drain/source ohmic contact formation, and the passivation layer deposition are considered and contributions of this work to the development of these technology modules is reported. The investigated technology modules are integrated into the complete fabrication process of vertical MOSFET devices. This MOSFET process was tested using cubic SiC (3C-SiC) and hexagonal SiC (4H-SiC) wafers and achieved results will be discussed. / QC 20110415

Page generated in 0.0836 seconds