• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 12
  • Tagged with
  • 127
  • 127
  • 124
  • 124
  • 123
  • 123
  • 123
  • 24
  • 23
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Behavioral Level Simulation Methods for Early Noise Coupling Quantification in Mixed-Signal Systems

Lundgren, Jan January 2005 (has links)
In this thesis, noise coupling simulation is introduced into the behavioral level. Methods and models for simulating on-chip noise coupling at a behavioral level in a design flow are presented and verified for accuracy and validity. Today, designs of electronic systems are becoming denser and more and more mixed-signal systems such as System-on-Chip (SoC) are being devised. This raises problems when the electronics components start to interfere with each other. Often, digital components disturb analog components, introducing noise into the system causing degradation of the performance or even introducing errors into the functionality of the system. Today, these effects can only be simulated at a very late stage in the design process, causing large design iterations and increased costs if the designers are required to return and make alterations, which may have occurred at a very early stage in the process. This is why the focus of this work is centered on extracting noise coupling simulation models that can be used at a very early design stage such as the behavioral level and then follow the design through the various design stages. To realize this, SystemC is selected as a platform and implementation example for the behavioral level models. SystemC supports design refinement, which means that when designs are being refined and are crossing the design levels, the noise coupling models can also be refined to suit the current design. This new way of thinking in primarily mixed-signal designs is called Behavioral level Noise Coupling (BeNoC) simulation and shows great promise in enabling a reduction in the costs of design iterations due to component cross-talk and simplifies the work for mixed-signal system designers. / Electronics Design Division
42

Theory and Applications of Coupling Based Intensity Modulated Fibre-Optic Sensors

Jason, Johan January 2008 (has links)
Optical fibre sensors can be used to measure a wide variety of properties. In some cases they have replaced conventional electronic sensors due to their possibility of performing measurements in environments suffering from electromagnetic disturbance, or in harsh environments where electronics cannot survive. In other cases they have had less success mainly due to the higher cost involved in fibre-optic sensor systems. Intensity modulated fibre-optic sensors normally require only low-cost monitoring systems principally based on light emitting diodes and photo diodes. The sensor principle itself is very simple when based on coupling between fibres, and coupling based intensity modulated sensors have found applications over a long time, mainly within position and vibration sensing. In this thesis new concepts and applications for intensity modulated fibre-optic sensors based on coupling between fibres are presented. From a low-cost and standard component perspective alternative designs are proposed and analyzed in order to find improved performance. The development of a sensor for an industrial temperature sensing application, involving aspects on multiplexing and fibre network installation, is presented. Optical time domain reflectometry (OTDR) is suggested as an efficient technique for multiplexing several coupling based sensors, and sensor network installation with blown fibre in micro ducts is proposed as a flexible and cost-efficient alternative to traditional cabling. A new sensor configuration using a fibre to a multicore fibre coupling and an image sensor readout system is proposed. With this system a high-performance sensor setup with a large measurement range can be realised without the need for precise fibre alignment often needed in coupling based sensors involving fibres with small cores. The system performance is analyzed theoretically with complete system simulations on different setups. An experimental setup is made based on standard fibre and image acquisition components, and differences from the theoretical performance are analyzed. It is shown that sub-µm accuracy should be possible to obtain, being the theoretical limit, and it is further suggested that the experimental performance is mainly related to two error sources: core position instability and differences between the real and the expected optical power distribution. Methods to minimize the experimental error are proposed and evaluated.
43

AlN Thin Film Electroacoustic Devices

Fuentes Iriarte, Gonzalo January 2003 (has links)
Recently, the enormous growth in personal communications systems (PCS), satellite communication and various other forms of wireless data communication has made analogue frequency control a key issue as the operation frequency increases to the low/medium GHz range. Surface acoustic wave (SAW) and bulk acoustic wave (BAW) electroacoustic devices are widely used today in a variety of applications both in consumer electronics as well as in specialized scientific and military equipment where frequency control is required. Conventional piezoelectric materials such as quartz, LiNbO3 and LiTaO3 suffer from a variety of limitations and in particular medium to low SAW/BAW velocity as well as being incompatible with the IC technology. Thin piezoelectric films offer the great flexibility of choosing at will the substrate/film combination, thus making use of the electroacoustic properties of non-piezoelectric substrates, which widens greatly the choice of fabrication materials and opens the way for integration of the traditionally incompatible electroacoustic and IC technologies. This thesis focuses on the synthesis and characterization of novel thin film materials for electroacoustic applications. A prime choice of material is thin piezoelectric AlN films which have been grown using both RF and pulsed-DC reactive sputter deposition on a variety of substrate materials. A unique synthesis process has been developed allowing the deposition of high quality AlN films at room temperature, which increases greatly the process versatility. The films are fully c-axis oriented with a 1.6° FWHM value of the rocking curve of the AlN-(002) peak. Complete process flows for the fabrication of both SAW and BAW devices have been developed. Electroacoustic characterization of 2 GHz BAW resonators yielded an electromechanical coupling coefficient (kt²) of 6.5%, Q-value of 600 and a longitudinal velocity of 11350 m/s. AlN thin films based SAW resonators on SiO2/Si yielded a SAW velocity of around 5000 m/s and a piezoelectric coupling coefficient (K²) of around 0.3%. Finally, AlN on polycrystalline diamond 1 GHz SAW resonators exhibited an extremely high SAW velocity of 11800 m/s, a piezoelectric coupling coefficient (K²) of 1% and a Q-value of 500.
44

Few-Particle Effects in Semiconductor Quantum Dots: Spectrum Calculations on Neutral and Charged Exciton Complexes

Chang, Kuang-Yu January 2010 (has links)
It is very interesting to probe the rotational symmetry of semiconductor quantum dots for quantum information and quantum computation applications. We studied the effects of rotational symmetry in semiconductor quantum dots using configuration interaction calculation. Moreover, to compare with the experimental data, we studied the effects of hidden symmetry. The 2D single-band model and the 3D single-band model were used to generate the single-particle states. How the spectra affected by the breaking of hidden symmetry and rotational symmetry are discussed. The breaking of hidden symmetry splits the degeneracy of electron-hole single-triplet and triplet-singlet states, which can be clearly seen from the spectra. The breaking of rotational symmetry redistributes the weight percentage, due to the splitting of px and py states, and gives a small brightness to the dark transition, giving rise to asymmetry peaks. The asymmetry peaks of 4X, 5X, and 6X were analyzed numerically. In addition, Auger-like satellites of biexciton recombination were found in the calculation. There is an asymmetry peak of the biexciton Auger-like satellite for the 2D single-band model while no such asymmetry peak occurs for the 3D single-band model. Few-particle effects are needed in order to determine the energy separation of the biexciton main peak and the Auger-like satellite. From the experiments, it was confirmed that the lower emission energy peak of X2- spectrum is split. The competed splitting of the X2- spectra were revealed when temperature dependence was implemented. However, since the splitting is small, we suggest the X2- peaks are broadened in comparison with other configurations according to single-band models. Furthermore, the calculated excitonic emission patterns were compared with experiments. The 2D single-band model fails to give the correct energy order of the peaks for the few-particle spectra; on the other hand the peaks order from 3D single-band model consistent with experimental data.
45

Permanent-Magnet Synchronous Machines with Non-Overlapping Concentrated Windings for Low-Speed Direct-Drive Applications

Meier, Florence January 2008 (has links)
Many geared electric drives can benefit from removing the gearbox and driving directly the load at low speed using a permanent-magnet synchronous machine (PMSM). PMSMs with non-overlapping concentrated windings are particularly attractive in low-speed direct drives since they allow, among other advantages, a high number of poles with a limited number of slots. Therefore, this thesis is dedicated to PMSMs with non-overlapping concentrated windings designed for low-speed directdrive applications.First, the design features specific to PMSMs with non-overlapping concentrated windings are presented and illustrated with examples based on finite-element (FE) simulations. Especially, it is shown that the selections of the stator core manufacturing method, the number of winding layers, the combination of pole and slot numbers, and the geometry of the tooth tips are crucial during the design stage of the machine.Second, the benefits of removing the gearbox in a 4.5 kW, 50 rpm mixer used in a waste-water treatment plant are investigated. With its PMSM having buried ferrite magnets and concentrated windings, the designed direct-drive mixer has a higher efficiency than the commercialized geared mixer, but it is also heavier and more expensive due to the larger required housing, shaft and seals. In addition, the cost of the stator core and coil assembly was also higher than expected. Therefore, the difficulties in manufacturing a stator core with concentrated windings are investigated. Mainly due to economical aspects, no prototype motor has been built for the direct-drive mixer.Finally, measurements on a prototype motor at disposal having a large constantpower speed range are performed. Three methods to measure the inductances without using a position sensor are provided and compared. One of the methods is a new test at load conditions to determine the inductance without the knowledge of the rotor position. Results from this method agree well with a conventional blocked rotor test, as well as with results from 3D-FE simulations. Furthermore, the measurements of the magnetic flux obtained with search coils placed in different parts of the stator are analyzed. The analysis allows highlighting the zigzag flux flowing from one magnet to another through a tooth tip, which is characteristic of PMSMs with non-overlapping concentrated windings. It is shown that this zigzag flux leakage causes high iron losses in the tooth tips that represent approximately 50% of the stator iron losses under field weakening operation. Using these measurements, the 3D-FE model of the prototype is also validated thoroughly. / QC 20100826
46

Demand responsive resource management for cellular networks : link asymmetry, pricing and multihopping

Lindström, Magnus January 2005 (has links)
Economic affordability of services and infrastructures has rapidly become one of the key issues in the evaluation and design of wireless access systems. The provisioning of high data rates, at an ``affordable'' price, constitutes a serious challenge to the structure and management of current and future wireless networks. The management of radio resources, Radio Resource Management or RRM for short, has traditionally been benchmarked mostly by technical merits such as throughput (data delivery capability) and Quality of Service (QoS). When comparing different RRM schemes, the scheme that can deliver more bits per Hertz (unit of bandwidth) or per Euro is often assumed the more efficient. From an economic point of view, however, cost efficiency is not equivalent to profitability. We conjecture that the economic efficiency and profitability can be improved both by better technical efficiency and by better accounting for users' service appreciation and willingness to pay. While we shall, primarily treat the operator's benefit of improved RRM, we will try to improve the RRM by means of being more responsive to the demands of the users. In eight conference and journal papers, we investigate: Provisioning of support for asymmetric traffic, Quality and pricing aware resource management and Creation of forwarding incentive in multihop cellular networks. We show that implementing support for asymmetric links can improve the efficiency of (service) production in Time Division Duplexing (TDD) mode wireless networks with asymmetric traffic. That is, more traffic can be handled with the same system resources. Compared to Frequency Division Duplexing (FDD), TDD offers more flexible use of spectrum resources. The benefits of TDD and support for asymmetric links are readily available for systems providing high-rate spotty coverage. For systems aiming at full coverage and tight reuse, however, proper measures must be taken to control inter-mobile- and inter-base-station-interference. We present the MEDUSA model framework for taking users' service appreciation and willingness to pay into account in performance evaluations of wireless networks with elastic traffic. Assuming that user satisfaction depends on both the quality and the price of the service, numerical experiments show that the economic efficiency of an RRM scheme is affected by the pricing scheme. We also introduce the concepts of speculative resource management to exploit traffic elasticity and improve resource utilisation. With speculative admission control, users with good propagation conditions may be admitted to a full system at the expense of a slight degradation of the QoS of some or all users, if the expected total revenue would thereby increase. Results indicate significant revenue gain with speculative admission control. Service perception aware scheduling was evaluated as a means to improve resource utilisation, but yielded only marginal gain compared to a weighted proportional fair scheduler. For the third area studied in this Thesis, i.e. multihopping in cellular networks, economic efficiency was both the goal and one of the means to achieve it. By means of a resource re-distribution scheme called Resource Delegation we eliminated the bandwidth bottle neck of the relays. We combined Resource Delegation with economic compensation for the energy expenditures of the relays and were able to achieve significantly increased operator revenue with maintained or improved user utility. Assuming that the added complexity of keeping track of reward transactions is negligible, profitability was correspondingly improved. / QC 20101021
47

Fabrication Technology for Efficient High Power Silicon Carbide Bipolar Junction Transistors

Ghandi, Reza January 2011 (has links)
The superior characteristics of Silicon Carbide as a wide band gap semiconductor have motivated many industrial and non-industrial research groups to consider SiC for the next generations of high power semiconductor devices. The SiC Bipolar Junction Transistor (BJT) is one candidate for high power applications due to its low on-state power loss and fast switching capability. However, to compete with other switching devices such as Field Effect Transistors (FETs) or IGBTs, it is necessary for a power SiC BJT to provide a high current gain to reduce the power required from the drive circuit. In this thesis implantation free 4H-SiC BJTs with linearly graded base layer have been demonstrated with common-emitter current gain of 50 and open-base breakdown voltage of 2700 V. Also an efficient junction termination extension (JTE) with 80% of theoretical parallel-plane breakdown voltage was analyzed by fabrication of high voltage PiN diodes to achieve an optimum dose of remaining JTE charge. Surface passivation of 4H-SiC BJT is an essential factor for efficient power BJTs. Therefore different passivation techniques were compared and showed that around 60% higher maximum current gain can be achieved by a newsurface passivation layer with low interface trap density that consists of PECVD oxide followed by post-deposition oxide anneal in N2O ambient. This surface passivation along with doublezone JTE were used for fabrication of high power BJTs that result in successful demonstration of 2800 V breakdown voltage for small area (0.3 × 0.3 mm) and large area (1.8 × 1.8 mm) BJTs with a maximum dc current gain of 55 and 52, respectively. The small area BJT showed RON = 4mΩcm2, while for the large are BJT RON = 6.8 mΩcm2. Finally, a Darlington transistor with a maximum current gain of 2900 at room temperature and 640 at 200 °C is reported. The high current gain of the Darlington transistor is achieved by optimum design for the ratio of the active area of the driver BJT to the output BJT. / QC 20110216
48

Design and implementation of controller for robotic manipulators using Artificial Neural Networks

Chamanirad, Mohsen January 2009 (has links)
In this thesis a novel method for controlling a manipulator with arbitrary number of Degrees of freedom is proposed, the proposed method has the main advantages of two common controllers, the simplicity of PID controller and the robustness and accuracy of adaptive controller. The controller architecture is based on an Artificial Neural Network (ANN) and a PID controller. The controller has the ability of solving inverse dynamics and inverse kinematics of robot with two separate Artificial Neural Networks. Since the ANN is learning the system parameters by itself the structure of controller can easily be changed to improve the performance of robot. The proposed controller can be implemented on a FPGA board to control the robot in real-time or the response of the ANN can be calculated offline and be reconstructed by controller using a lookup table. Error between the desired trajectory path and the path of the robot converges to zero rapidly and as the robot performs its tasks the controller learns the robot parameters and generates better control signal. The performance of controller is tested in simulation and on a real manipulator with satisfactory results.
49

Studio utan väggar : Projektering av musikstudio utan bestämd lokal / Studio Without Walls : Planning of a Recording Studio without a Definite Location

Zetterman, Ulf January 2009 (has links)
Det här examensarbetets syfte är att skapa en inspelningsstudio åt Strömkullegymnasiet i Bengtsfors. Det innefattar både akustik och teknik då båda delar är viktiga för resultatet av en inspelning. Elever och lärare på andra musikgymnasier har berättat hur studion fungerar på deras skolor och deras erfarenheter har varit till hjälp i det här arbetet. Den största utmaningen med projektet är att det inte finns någon lokal att bygga en studio i utan ett koncept som är flyttbart utan att man behöver påverka den gamla eller den nya lokalen måste utformas. Projektet kunde inte slutföras då det inte är bestämt var studion ska placeras. Det har tillkommit alternativa lokaler som skiljer sig drastiskt från de två ursprungliga alternativen. / The purpose of this degree work is to help Strömkullegymnasiet in Bengtsfors to get a recording studio. It involves both the acoustics and the equipment because both parts are important to the outcome of a recording. Teachers and students from other music high schools have told how their studios works and their experience have been a good help for this report. The biggest challenge with this project is that it doesn’t exist a location where a studio can be built so a new moveable studio concept has to be developt that does not affect the new location. The project couldn’t be completed because the decision where to locate the studio has not been taken. Some other locations is under investigation and they are a lot different from the original locations.
50

Design Space Exploration of Time-Multiplexed FIRFilters on FPGAs

Alam, Syed Asad January 2010 (has links)
FIR (Finite-length Impulse Response) filters are the corner stone of many signalprocessing devices. A lot of research has gone into their development as wellas their effective implementation. With recent research focusing a lot on powerconsumption reduction specially with regards to FPGAs, it was found necessaryto explore FIR filters mapping on FPGAs. Time multiplexed FIR filters are also a good candidate for examination withrespect to power consumption and resource utilization, for example when implementedin Field Programmable Gate Arrays (FPGAs). This is motivated by thefact that the usable clock frequency often is higher compared to the required datarate. Current implementations by, e.g., Xilinx FIR Compiler suffer from highpower consumption when the time multiplexing factor is low. Further, it needs tobe investigated how exploiting coefficient symmetry, scaling the coefficients andincreasing the time-multiplexing factor influences the performance.

Page generated in 0.1066 seconds