Spelling suggestions: "subject:"element los""
1 |
Microstructure and properties of welds in the lean duplex stainless steel LDX 2101Westin, Elin M. January 2010 (has links)
Duplex stainless steels can be very attractive alternatives to austenitic grades due to their almost double strength at equal pitting corrosion resistance. When welding, the duplex alloys normally require addition of filler metal, while the commodity austenitic grades can often be welded autogenously. Over-alloyed consumables are used to counteract segregation of important alloying elements and to balance the two phases, ferrite and austenite, in the duplex weld metal. This work focuses on the weldability of the recently-developed lean duplex stainless steel LDX 2101® (EN 1.4162, UNS S32101). The pitting corrosion resistance of this grade is better than that of austenitic AISI 304 (EN 1.4307) and can reach the level of AISI 316L (EN 1.4404). The austenite formation is rapid in LDX 2101 compared to older duplex grades. Pitting resistance tests performed show that 1-2.5 mm thick laser and gas tungsten arc (GTA) welded LDX 2101 can have good corrosion properties even when welding autogenously. Additions of filler metal, nitrogen in the shielding gas, nitrogen-based backing gas and use of laser hybrid welding methods, however, increase the austenite formation. The pitting resistance may also be increased by suppressing formation of chromium nitrides in the weld metal and heat affected zone (HAZ). After thorough post-weld cleaning (pickling), pitting primarily occurred 1-3 mm from the fusion line, in the parent metal rather than in the HAZ. Neither the chromium nitride precipitates found in the HAZ, nor the element depletion along the fusion line that was revealed by electron probe microanalysis (EPMA) were found to locally decrease the pitting resistance. The preferential pitting location is suggested to be controlled by the residual weld oxide composition that varies over the surface. The composition and thickness of weld oxide formed on LDX 2101 and 2304 (EN 1.4362, UNS S32304) were determined using X-ray photoelectron spectroscopy (XPS). The heat tint on these lean duplex grades proved to contain significantly more manganese than what has been reported for standard austenitic stainless steels in the AISI 300 series. A new approach to heat tint formation is presented; whereby evaporation of material from the weld metal and subsequent deposition on the already-formed weld oxide are suggested to contribute to weld oxide formation. This is consistent with manganese loss from the weld metal, and nitrogen additions to the GTA shielding gas enhance the evaporation. The segregation of all elements apart from nitrogen is low in autogenously welded LDX 2101. This means that filler wire additions may not be required as for other duplex grades assuming that there is no large nitrogen loss that could cause excessive ferrite contents. As the nitrogen appears to be controlling the austenite formation, it becomes essential to avoid losing nitrogen during welding by choosing nitrogen-containing shielding and backing gas. / QC 20101213
|
2 |
Welds in the lean duplex stainless steel LDX 2101 : effect of microstructure and weld oxide on corrosion propertiesWestin, Elin M. January 2008 (has links)
<p>Duplex stainless steels are a very attractive alternative to austenitic grades due to their higher strength and good corrosion performance. The austenitic grades can often be welded autogenously, while the duplex grades normally require addition of filler metal. This is to counteract segregation of important alloying elements and to give sufficient austenite formation to prevent precipitation of chromium nitrides that could have a negative effect on impact toughness and pitting resistance. The corrosion performance of the recently-developed lean duplex stainless steel LDX 2101 is higher than that of 304 and can reach the level of 316. This thesis summarises pitting resistance tests performed on laser and gas tungsten arc (GTA) welded LDX 2101. It is shown here that this material can be autogenously welded, but additions of filler metal, nitrogen in the shielding gas and use of hybrid methods increases the austenite formation and the pitting resistance by further suppressing formation of chromium nitride precipitates in the weld metal. If the weld metal austenite formation is sufficient, the chromium nitride precipitates in the heat-affected zone (HAZ) could cause local pitting, however, this was not seen in this work. Instead, pitting occurred 1–3 mm from the fusion line, in the parent metal rather than in the high temperature HAZ (HTHAZ). This is suggested here to be controlled by the heat tint, and the effect of residual weld oxides on the pitting resistance is studied. The composition and the thickness of weld oxide formed on LDX 2101 and 2304 were determined using X-ray photoelectron spectroscopy (XPS). The heat tint on these lean duplex grades proved to contain significantly more manganese than what has been reported for standard austenitic stainless steels in the 300 series. A new approach on heat tint formation is consequently presented. Evaporation of material from the weld metal and subsequent deposition on the weld oxide are suggested to contribute to weld oxide formation. This is supported by element loss in LDX 2101 weld metal, and nitrogen additions to the GTA shielding gas further increase the evaporation.</p><p> </p>
|
3 |
Welds in the lean duplex stainless steel LDX 2101 : effect of microstructure and weld oxides on corrosion propertiesWestin, Elin M. January 2008 (has links)
Duplex stainless steels are a very attractive alternative to austenitic grades due to their higher strength and good corrosion performance. The austenitic grades can often be welded autogenously, while the duplex grades normally require addition of filler metal. This is to counteract segregation of important alloying elements and to give sufficient austenite formation to prevent precipitation of chromium nitrides that could have a negative effect on impact toughness and pitting resistance. The corrosion performance of the recently-developed lean duplex stainless steel LDX 2101 is higher than that of 304 and can reach the level of 316. This thesis summarises pitting resistance tests performed on laser and gas tungsten arc (GTA) welded LDX 2101. It is shown here that this material can be autogenously welded, but additions of filler metal, nitrogen in the shielding gas and use of hybrid methods increases the austenite formation and the pitting resistance by further suppressing formation of chromium nitride precipitates in the weld metal. If the weld metal austenite formation is sufficient, the chromium nitride precipitates in the heat-affected zone (HAZ) could cause local pitting, however, this was not seen in this work. Instead, pitting occurred 1–3 mm from the fusion line, in the parent metal rather than in the high temperature HAZ (HTHAZ). This is suggested here to be controlled by the heat tint, and the effect of residual weld oxides on the pitting resistance is studied. The composition and the thickness of weld oxide formed on LDX 2101 and 2304 were determined using X-ray photoelectron spectroscopy (XPS). The heat tint on these lean duplex grades proved to contain significantly more manganese than what has been reported for standard austenitic stainless steels in the 300 series. A new approach on heat tint formation is consequently presented. Evaporation of material from the weld metal and subsequent deposition on the weld oxide are suggested to contribute to weld oxide formation. This is supported by element loss in LDX 2101 weld metal, and nitrogen additions to the GTA shielding gas further increase the evaporation. / QC 20101126
|
Page generated in 0.0868 seconds