• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3969
  • 1584
  • 562
  • 542
  • 482
  • 129
  • 125
  • 112
  • 76
  • 76
  • 62
  • 59
  • 59
  • 59
  • 59
  • Tagged with
  • 9645
  • 7485
  • 4870
  • 2700
  • 1970
  • 1476
  • 1259
  • 933
  • 921
  • 837
  • 745
  • 723
  • 668
  • 667
  • 593
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Effects of connections on structural behaviour in fire

Anderson, Kate Rachel January 2012 (has links)
The behaviour of connections in fire has become of particular interest to the structural engineering community following the possible link of connection failure to the collapse of the World Trade Centre building 7 and the failures and huge distortion of some connections after the Cardington full scale tests. In order to widen the understanding of the complex behaviour of connections in fire this thesis discusses a number of specific issues relating to connections in fire and their influence on structural response. The first part of this work presents a finite element model for predicting connection temperature profiles. A parametric study is then carried out to investigate which factors have the greatest influence on temperature prediction. This method is compared to the currently available methods for connection temperature prediction presented in the Eurocodes: using a percentage of the beam mid-span lower flange temperature to estimate the temperature across the connection and a lumped capacitance method to calculate average joint temperature based on the mass of material and surface area. In each case, along with the predicted temperatures, the influence on connection material strength is also presented. The three methods have varying levels of accuracy. The finite element model provides detailed and accurate results due to the thorough consideration given to the input parameters. The percentages method gives reasonable estimates in the heating phase but is less accurate in cooling and the lumped capacitance method is only suitable for crude estimations. The remainder of the thesis is concerned with how a number of phenomena affect the overall structural behaviour of buildings: the inclusion of detailed connection models within larger, less complex, finite element models; the effects of connection rotational capacity and the composite beam-slab shear connection. A finite element model for isolated joints is presented in detail for a number of heating regimes and connection types. The influence of the bolt shear and tensile properties is considered in detail and the need for further testing on bolts at high temperatures is discussed. The model has the capacity to predict a number of failure modes and also shows a good comparison between experimental and theoretical deflected shapes. This connection model is then inserted into a large model. It is shown that whilst the inclusion of the shell connection has a small influence on the residual deflections of a structure after cooling when compare to a model where connections are simple and fixed, the difference between heating and not heating the connection does effect structural deflections. Following on from the previous full scale model, simple connections are then exclusively included where the connection rotational capacity is varied. Results show that there is not a large effect on the structural deflections or beam axial and shear forces when rotational behaviour is changed. However column bending moments are hugely increased during heating both in the fire compartment and away from it and fixed connections result in larger bending moment that pinned ones. Finally, the shear interaction between the slab and beams is investigated. The detailed development of both an ambient temperature and then an elevated temperature model of a beam-slab system including explicit shear studs are presented. A study is then carried out looking at the effects on deflections and beam forces when the strength and ductility of the studs are altered. It is found that more ductile studs with a high shear capacity are beneficial for reducing forces in beams and limiting their deflections. Finally the shear studs are included in the larger model used in previous chapters where results are similar to those seen in the beam-slab model, but are less pronounced.
362

Using DEM-CFD method at colloidal scale

Chaumeil, Florian January 2013 (has links)
The aim of this work is to look into the applicability of Discrete Element Modelling (DEM) coupled to Computational Fluid Dynamics (CFD) to simulate micro-scale colloidal particles immersed in fluid. Numerical methods were implemented through the commercial framework of EDEM2.3. As opposed to dissolved matter, which behaves as a continuum within the fluid medium, particulate matter is made of discrete entities that interact amongst themselves, and with the fluid and any physical boundaries. Particulate matter is ubiquitous in many purification processes that would beneficiate from having an easy way to model particle dynamics immersed in water. In an effort to understand better the dynamics of particle deposition under surface forces and hydraulic forces, a micro-scale numerical model was built adopting both a mechanistic and a statistical approach to represent the forces involved in colloidal suspension. The primary aim of the model was to simulate particle aggregation, deposition and cluster re-suspension in real world micro-systems. Case studies include colloidal flocculation in a constricted tube, and colloidal fouling around membrane filtration feed spacers. This work used a DEM-CFD coupling method that combined the DEM particle flow simulation with hydrodynamics forces from a velocity field computed through CFD. It also implemented boundary-particle and particle-particle interactions by enabling the modelling of surface and interfacial forces. Two kinds of coupling method were considered: two-way and one-way coupling. Two-way coupling is suitable for high particle concentration flow where particle loading affects the hydrodynamics. One-way coupling is suitable for dispersed particle configuration where the flow field is assumed to be undisturbed by the particles. The advantages and drawbacks of both techniques for micron-size particles were investigated. EDEM 2.3 was customised with plug-ins to implement Van der Waals forces and Brownian forces and its post-processing features offered the ability to investigate easily the microparticles behaviour under the influence of fluid forces. In this context, DEM-CFD modelling using EDEM 2.3 represents an improvement on previously published works as it enables higher visibility and reproducibility along with increasing the number of potential users of such modelling. Emphasis was given in presenting original findings and validation results that illustrate DEMCFD applicability, with respect to modelling of hydraulically mediated colloidal surface interaction; while highlighting factors that limit the ability of the technique. For instance, the effect of particle disturbance on the surrounding medium currently proves difficult to model.
363

An improved finite element model for vibration and control simulation of smart composite structures with embedded piezoelectric sensor and actuator

Kekana, Marino January 2001 (has links)
A thesis submitted in candidacy for the Degree of Doctor of Technology: Electrical Engineering, Technikon Natal, 2001. / This thesis details a study conducted to investigate the dynamic stability of an existing active control model (ACFl) of a composite structure embedded with a piezoelectric sensor and actuator for the purpose of vibration measurement and control. Criteria for stability are established based on the second method of Lyapunov which considers the energy of the system. Results show that ACFl is asymptotically stable although piezoelectric control effects persist when the feedback gain is set to zero. Meanwhile, it is required that there should be no control effects occurring through the piezoelectric actuator when the gain is set to zero. In this study, a new active control model (ACF2) is developed to satisfy the stability criteria, which satisfies the requirement of no piezoelectric control effects when the gain is set to zero. In ACF2 - as well as ACFl - the displacement and potential fields are discretised using the finite element method. In light of the locking phenomena associated with discrete displacements - which is expected to be pronounced in the case of discrete potentials due to their element geometry, ACF2-mixed is developed. ACF2 and ACF2-mixed control methodologies are similar except that in ACF2 both the displacement and potential field are discretised whereas in ACF2-mixed, only the displacement field is discretised and the potential field is continuous. Consequent to ACF2 and ACF2-mixed, stability analysis of the resulting time integration scheme is investigated as well. The results show that the damping forces due to the piezoelectric effect do not add energy to the structure. Hence, asymptotic stability is achieved. The time integration scheme yielded a small error, consistent with the literature. Numerical results revealed that ACFl exhibits a high degree of locking which is relaxed in ACF2 whereas ACF2-mixed exhibits envisaged results when compared with the other two models. Therefore, the ACF2 and ACF2-mixed will provide engineers with an alternative simulation model to solve actively controlled vibration problems hitherto. / D
364

Combined analytical and numerical method for magnetic component design

08 September 2015 (has links)
M.Ing. / High frequency magnetic components have significant advantages related to cost and physical size compared to their low frequency counterparts. The advent of high frequency power switch technology made the transformer frequency a variable and recent advances in this field have been ever pushing the switching frequency of higher power converters. Although high frequency inductors and transformers have been used and applied extensively to an increasingly broad range of applications over recent decades, analysis and design of these devices involves certain difficulties, related to extra losses due to eddy currents as well as smaller cooling surfaces,..
365

Evaluering van dieptrekbaarheid van aluminiumplaat

08 September 2015 (has links)
M.Ing. / To investigate the effect of plastic anisotropy in 1200H14 Aluminium sheet, simulations of the Swift Cupping Test were carried out using the finite element program ABAQUS. Anisotropy was built into all simulations based on the plastic strain ratio which was calculated from tensile tests on specimen cut in three directions in the plane of the sheet. Deep drawing tests were carried out using a punch and die sub-assembly as described by the Swift Cupping Test. Holder loads were kept constant while the punch load and displacement were recorded. Punch force-punch displacement curve and the formation of ears were compared with experimental results.
366

Integration of CAD, CAM and computer aided inspection for the development of complex shaped products

Jiang, Zongchuan January 2001 (has links)
No description available.
367

Internetové obchodování s mezinárodním prvkem / Internet business transactions with an international element

Uram, Tomáš January 2012 (has links)
In the last two decades the world has experienced enormous growth of the internet users what has created business opportunities in a completely new and very specific space. The goal of this thesis is to analyze the most important legal aspects of internet business transactions with an international element. The internet commerce and subsequently the consumer protection programme has become a legal discipline which is subject of extensive development reflected in setting in legal standards found within the legal code of the Czech Republic. The thesis is divided into three main parts. It starts with a short introduction of internet environment and its characteristic, focusing on its specific aspects which respresent a challenge for the regulation such as decentralisation or geographical independence. The second part deals with the process of closing contracts on and consumer protection within the scope of european regulation such as directive on electronic commerce, directive on the protection of consumers in respect of distance contracts or directive on consumer rights. The third part is dedicated to the role of the international element within internet business transactions and methods of identification of the applicable law and respective jurisdiction. The role of the Court of Justice of the European Union...
368

Geochemistry of eclogites from Western Norway : implications from high-precision whole-rock and rutile analyses

Wilkinson, Darren James January 2015 (has links)
The Western Gneiss Region (WGR) in Norway is home to some of the world’s most spectacular exposures of high pressure (HP) and ultrahigh pressure (UHP) eclogites. Despite extensive petrological studies into their pressure, temperature and time (PTt) histories, relatively few have reported on their trace element compositions. Such data can be used to supplement our understanding of the provenance and history of Norwegian eclogites, as well as to further our understanding of trace element fluxes during HP to UHP metamorphism in subduction zone settings. In order to address this shortfall in data availability, the first step was to investigate and apply the best dissolution techniques for preparing eclogite samples for chemical analysis. Eclogites commonly contain up to a few weight percent rutile (TiO2), which is known to be an important host for a variety of major and trace elements (e.g. Ti, Nb and Ta). However, typical rock digestion procedures are incapable of dissolving rutile, and thus may lead to inaccurate measurements. It was found that that total dissolution of rutile can be achieved by dissolving samples in sealed pressure vessels at increased pressures and temperatures, ultimately leading to greatly increased data accuracy for analyses of any rutile-bearing lithology. The solutions were analysed by standard ICP-MS techniques and the results compared to analyses of powders by XRF spectrometry. Our high-accuracy and high-precision data were subjected to immobile trace element discriminant analyses that suggested eclogites belonged to three broad geochemical groups: eclogites with mid ocean ridge Basalt (MORB)-like composition; eclogites with arc-like composition; and eclogites with geochemical signatures significantly perturbed by metamorphism. The geochemistry of eclogites in the first two groups are shown to likely reflect protolith composition, and as such we used model protolith compositions to calculate estimated element mobilities (EMMs) for those elements considered relatively mobile during metamorphism. It was not possible to determine protoliths for eclogites in the third category using trace elements alone. Finally, the trace element geochemistry of a large number of separated eclogite-hosted rutiles was studied. The data collected were used to demonstrate that rutile contains significant amounts of the whole-rock’s high field strength element (HFSE) budget, and may exert significant control on the HFSE composition of passing hydrothermal fluids. Furthermore, Zr-in-rutile thermometry (ZRT) was applied to separated rutiles. This temperature information was used to better our understanding of the thermal history of the WGR, as well as to create a map of eclogite temperatures in the Nordfjord-Statlandet area. This high-resolution thermal map of arguably the most important area of the WGR, supports current interpretations that during the Caledonian Orogeny the leading edge of the Baltica plate was consumed in a northwest to north-northwest-dipping subduction zone under Laurentia. Furthermore, isotherms on this map mimic several major fold hinges in the region rather well, thus providing support to the hypothesis that such structures were most likely formed during the collapse of the Scandinavian Caledonian Orogen after the peak metamorphism of most eclogites.
369

Finite element analysis of the hierarchical structure of human bone

Dolloff, Katherine M. 03 1900
Approved for public release; distribution is unlimited. / The objective of this study was to develop an analytical model of the basic hierarchical structure of the human bone. The model computed the stiffness of composite collagen fibers comprised of collagen fibrils and hydroxyapatite mineral crystals. Next, the stiffness of the concentric lamella was computed utilizing the stiffness of the collagen fibers and layer information. Finally, the effective stiffness of the bone was estimated. In order to determine the stiffness of the collagen fiber, a three-dimensional finite element model was developed and a simple analytical model was derived. The simple analytical model was validated using the finite element results. The lamination theory of unidirectional fibrous composites was used to calculate the stiffness of the lamella and eventually the bone stiffness. A series of parametric studies were conducted to understand what parameter(s) affected the stiffness of the bone most significantly. This information will be useful when an artificial bone structure is designed. / http://hdl.handle.net/10945/1123 / Lieutenant, United States Navy
370

Comparative Analysis of Marine Structural End Connections

Silewicz, Bret 20 December 2009 (has links)
Numerous structural end connections are utilized everyday in the marine industry for ship design and/or maintenance. End connection design has been developed in earlier vessel designs and adapted as a general standard for all vessels being designed / built at a facility. Usually the supporting calculations developed to analyze the structural end connection are not available for engineers to re-examine. Furthermore, young engineers employ un-proven end connections in their designs, using the justification “It has been done like this in the past, it should work.” In this thesis, the author concentrates on finite element analysis for thirteen typical end connections used in the marine industry and correlated the shear and moment transfer to an AISC developed empirical beam equation for comparison. The author will rely on first principle equations and finite element analysis to prove the efficiency of various end connections, and draw comparative conclusions per each end connection analyzed.

Page generated in 0.0776 seconds