• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3973
  • 1585
  • 562
  • 542
  • 482
  • 129
  • 125
  • 112
  • 76
  • 76
  • 62
  • 59
  • 59
  • 59
  • 59
  • Tagged with
  • 9652
  • 7491
  • 4875
  • 2701
  • 1970
  • 1477
  • 1259
  • 935
  • 921
  • 838
  • 747
  • 727
  • 669
  • 668
  • 593
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Finite element analysis of reinforced concrete members.

Spokowski, Robert William. January 1972 (has links)
No description available.
392

Torsional properties of spur gears in mesh using nonlinear finite element analysis.

Sirichai, Seney January 1999 (has links)
This thesis investigates the characteristics of static torsional mesh stiffness, load sharing ratio, and transmission errors of gears in mesh with and without a localised tooth crack.Gearing is perhaps one of the most critical components in power transmission systems. The transmission error of gears in mesh is considered to be one of the main causes of gear noise and vibration. Numerous papers have been published on gear transmission error measurement and many investigations have been devoted to gear vibration analysis. There still, however, remains to be developed a general non-linear Finite Element Model capable of predicting the effect of variations of gear torsional mesh stiffness, transmission error, transmitted load and load sharing ratio. The primary purpose of this study was to develop such a model and to study the behaviour of the static torsional mesh stiffness, load sharing ratio, and transmission error over one completed cycle of the tooth mesh.The research outlined in this thesis considers the variations of the whole gear body stiffness arising from the gear body rotation due to tooth bending deflection, shearing displacement, and contact deformation. Many different positions within the meshing cycle were investigated and then compared with the results of a gear mesh having a single cracked tooth.In order to handle contact problems with the finite element method, the stiffness relationship between the two contact areas must be established. Existing Finite Element codes rely on the use of the variational approach to formulate contact problems. This can be achieved by insertion of a contact element placed in between the two contacting areas where contact occurs. For modelling of gear teeth in mesh, the penalty parameter of the contact element is user-defined and it varies through the cyclic mesh. A simple strategy of how to overcome these difficulties is ++ / also presented. Most of the previously published finite element analysis with gears has involved only partial teeth models.In an investigation of gear transmission errors using contact elements, the whole body of the gears in mesh must be modelled, because the penalty parameter of the contact elements must account for the flexibility of the entire body of the gear not just the local stiffness at the contact point.
393

Nonlinear dynamic analysis of reinforced concrete frames under extreme loadings

Vali Pour Goudarzi, Hamid Reza, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2009 (has links)
This research focuses on improvements and application of 1D finite elements for nonlinear dynamic analysis of reinforced concrete frames under extreme loadings. The concept of force interpolation is adopted for the element formulation and a solution scheme developed based on a total secant stiffness approach that provides good convergence characteristics. The geometrical nonlinearities including 2nd order P-Delta effects as well as catenary action are considered in the element formulation. It is shown that geometrical nonlinearities may have a significant effect on member (structure) response within extreme loading scenarios. In the analysis of structures subjected to extreme loadings, accurately modelling of the post peak response is vital and, in this respect, the objectivity of the solution with softening must be maintained. The softening of concrete under compression is taken into account, and the objectivity preserved, by adopting a nonlocal damage model for the compressive concrete. The capability of nonlocal flexibility-based formulation for capturing the post-peak response of reinforced concrete beam-columns is demonstrated by numerical examples. The 1D frame element model is extended for the modelling of 3D framed structures using a simplified torque-twist model that is developed to take account of interaction between normal and tangential forces at the section level. This simplified model can capture the variation of element torsional stiffness due to presence of axial force, bending moment and shear and is efficient and is shown to provide a reasonable degree of accuracy for the analysis of 3D reinforced concrete frames. The formulations and solution algorithms developed are tested for static and dynamic analysis of reinforced concrete framed structures with examples on impact analysis of beams, dynamic analysis of frames and progressive collapse assessment of frames taken from the literature. The verification shows that the formulation is very efficient and is capable of modelling of large scale framed structures, under extreme loads, quickly and with accuracy.
394

A study of the desingularised boundary-element method and viscous roll damping

Matsubara, Shinsuke, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2005 (has links)
Two major areas were studied in this research to achieve more efficient and optimised method for the prediction of ship motion, and this research has two aims. The first aim was to improve an algorithm of the oscillatory problems for strip theory by means of reducing numerical integration using the desingularised method. A new way of distributing point sources was developed by the author in order to solve the boundary problem on the source distribution. Results showed that desingularsation can be utilised on rounded hull shapes. Although the desingularsation process reduces the computational time, the conventional method is more robust and stable due to the simple source panel distribution. The second aim was an investigation of viscous roll damping of ship motion with the influence of forward velocity, and several numerical simulations were developed in order to support wind-tunnel experimentation. The wind tunnel experimentation was conducted by using a 1.2 m NACA6521 modified cylindrical-bulb model to investigate the viscous effect on the rolling motion of the ship. Since viscous damping was very small under restrictions from the experimental condition, a normal method of collecting data of roll motion, in which a device is physically attached on the bulb model, was not suitable. As a solution, remote sensing was utilised to capture the motion picture by a digital video camera. A visual analysis was then conducted to obtain data of the roll motion of the bulb model inside the wind-tunnel test section. Two different numerical simulations were developed under the hypothesis that the forward velocity influences the boundary layer generation to cause viscous roll damping on the ship model hull. The first numerical simulation uses the energy method to produce damping coefficients, and the second numerical simulation requires solving the motion of equation numerically. It was discovered that the increase of forward velocity results in a linear increase of the viscous damping coefficient. The numerical simulation and experimental data agree closely. Therefore, the theory used to predict the viscous roll damping was shown to be reasonably accurate.
395

A NUMERICAL INVESTIGATION INTO THE MECHANISMS OF RESIDUAL STRESSES INDUCED BY SURFACE GRINDING

Mahdi, Mofid January 1998 (has links)
Abstract Grinding introduces unavoidable residual stresses of significant but unknown magnitudes. The effect of residual stresses in surface integrity is related to the nature of the residual stresses which relies purely on the process parameters and the workmaterial properties. It is a well-known fact that the fatigue strength of a ground component is increased by introducing compressive stresses. On the other hand, fatigue cracks may originate at regions of maximum tensile stress and usually at the surface of the material. Moreover, stress corrosion cracking is another consequence of critical surface tensile stress. Added to that, the residual stresses may result in dimension alteration and surface distortion, particularly for thin products such as plates. The beneficial effects of compressive residual stresses have been widely recognized in industry. The wise application of such a principle would bring about improved economical use of parts subjected to fatigue loading and aggressive environmental conditions. Therefore a better understanding of residual stress mechanisms is necessary to increase the dimensional accuracy and improve the surface integrity of ground elements, particularly for parts with high precision and manufactured by automated production lines. Consequently, the development of reliable models for predicting residual stresses is of great value in reducing the amount of measurements and experimental tests of residual stresses. Unfortunately, little effort has been devoted so far to develop appropriate models to take into account grinding conditions, workmaterial properties and boundary conditions. This thesis aims to investigate the residual stress mechanisms induced by grinding in terms of grinding parameters. In order to obtain a full understanding, both the roles of individual factors causing residual stresses (i.e. mechanical, thermal and phase transformation) and their couplings were carefully studied with the aid of the finite element method. The studies include: (1) residual stresses due to thermal grinding conditions, (2) residual stresses due to iso-thermal mechanical grinding conditions, (3) coupling of thermo-mechanical conditions, (4) coupling of thermo-phase transformation, and (5) the full coupling of all the factors. It is found that under sole thermal grinding conditions, the heat flux associated with up-grinding may lead to a higher grinding temperature compared with that of down-grinding. A constant flux introduces the least temperature rise if the total grinding energy is the same. Higher convection heat transfer not only decreases the grinding temperature but also makes the temperature rise occur mainly within a thin surface layer. A similar effect can be achieved by applying higher table speeds. When the grinding temperature is less than the austensing temperature, surface residual stresses are tensile. The heat generated within the grinding zone causes a very non-uniform temperature field in the workpiece. The part of the workmaterial subjected to a higher temperature rise expands more significantly and causes compressive stresses because of the restraint from its surrounding material that expands less. When the surface heat flux moves forward, the material outside the grinding zone contracts under cooling. Since the workmaterial has been plastically deformed during thermal loading, the contraction is restrained and thus a tensile stress field is generated locally. If a workpiece material experiences a critical temperature variation in grinding, phase transformation takes place and a martensite layer appears in the immediate layer underneath the ground surface. It was found that the growth of martensite develops a hardened zone with a higher yield stress that expands with the movement of the heat flux. A tensile surface residual stress is then developed. When the volume growth of material takes place during phase change, compressive residual stresses may also be generated. Under iso-thermal grinding conditions, it was found that plane stress is mainly compressive regardless of the distribution of surface traction and the direction of the tangential grinding force. With up-grinding, the residual stress in the grinding direction is always tensile. However, down-grinding may yield compressive surface residual stresses if the magnitude of the ratio of horizontal to vertical grinding forces is sufficiently large. Moreover, it is noted that discrete surface traction, which is more reasonable in terms of simulating the individual cutting of abrasive grits, would bring about more complex residual stress distribution that is very sensitive to the combined effect of individual cutting grits. If thermal and mechanical grinding conditions are coupled, a state free from residual stresses may be achieved if grinding heat is low and either the convection heat transfer or the table speed is high. However, it is found that the full coupling of the mechanical deformation, the thermal deformation and deformation by phase change results in tensile residual stresses. The effects of cooling and mechanical traction in this case however are minor. In summary, the research of this thesis explored the following: (a) grinding temperature development in terms of a wide range of grinding parameters together with the effect of temperature-dependent material properties, (b) the origin and onset of irreversible deformation due to mechanical loading, thermal loading and phase change under critical grinding conditions, (c) the effects of individual residual stress mechanisms and their partial and full couplings, and (d) the selection of grinding conditions to achieve beneficial residual stresses. Finally, based on the new findings in this research, a more comprehensive methodology is suggested for further study.
396

The development and application of the finite element method and finite strip method in engineering analysis / by Yau Kai Cheung

Cheung, Yau Kai January 1978 (has links)
2 v. : / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (D.E.)--Dept. of Electrical Engineering, University of Adelaide
397

Prediction of pathological fracture risk due to metastatic bone defect using finite element method

Lai, Wang-to, Derek. January 2006 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
398

Maximum element temperature for Kanthal Super 1800S in flowing nitrogen atmosphere with low content of oxygen

Persson, Petter January 2010 (has links)
<p><strong>Abstract</strong></p><p>The behavior for MoSi<sub>2</sub> based high temperature heating elements for resistive heating has been examined in elevated temperature and low oxygen content environment. MoSi<sub>2</sub> spontaneously forms a protective SiO<sub>2</sub> scale at high temperature if the amount of oxygen in the ambient atmosphere is sufficient according to the following reaction:</p><p>5MoSi<sub>2</sub> + 7O<sub>2</sub>(g)  7SiO<sub>2</sub> + Mo<sub>5</sub>Si<sub>3</sub></p><p>If the oxygen content at a specific temperature is too low, SiO(g) is more stable than SiO<sub>2</sub> and the following reaction will occur instead:</p><p>2SiO<sub>2</sub>  2SiO(g) + O<sub>2</sub>(g)</p><p>Then surface will be Si-deplated and finally, the base material will be exposed. Si and Mo will oxidize and degas from the surface as SiO and MoO<sub>3</sub> with severe diameter reduction of the heating element as a result. It is therefore of high interest to find the relationship between the maximum element temperature and the oxygen content in the ambient atmosphere to be able to fully exploit the potential of the heating elements and also to aid and help diagnose customer complaints.</p><p> </p><p>After 14 full scale tests in a custom made atmospheric furnace, the following equation could be calculated:</p><p>p(O<sub>2</sub>) = 1.748·10<sup>0.01677·T·log(e)-10</sup></p><p>The equation gives the minimum oxygen content at a specified temperature. The equation is based on 100 hours tests at atmospheric pressure, gas flow rate of 4 liter per minute, varying temperature and varying oxygen content. Nitrogen has been used as carrier gas for the oxygen.</p>
399

Finite element analysis of low-profile FRP bridge deck (Prodec 4)

Boyapati, Siva Kumar. January 2006 (has links)
Thesis (M.S.)--West Virginia University, 2006. / Title from document title page. Document formatted into pages; contains xv, 147 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 145-147).
400

Isogeometric analysis of turbulence and fluid-structure interaction

Bazilevs, Jurijs, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.

Page generated in 0.0653 seconds