• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1137
  • 739
  • 258
  • 135
  • 92
  • 77
  • 59
  • 36
  • 34
  • 22
  • 22
  • 7
  • 7
  • 6
  • 6
  • Tagged with
  • 2985
  • 436
  • 298
  • 287
  • 286
  • 250
  • 218
  • 202
  • 198
  • 190
  • 178
  • 178
  • 171
  • 158
  • 155
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

HYDROPHOBIC DIELECTRICS OF FLUOROPOLYMER/ BARIUM TITANATE NANOCOMPOSITES FOR LOW VOLTAGE AND CHARGE STORING ELECTROWETTING DEVICES

KILARU, MURALI K. 03 July 2007 (has links)
No description available.
242

Surface Charge Density Effect On HBV Capsid Assembly Behavior In Solution

Sun, Xinyu 13 June 2016 (has links)
No description available.
243

Charge Transport Properties in Semiconductor Nanowires

Ko, Dongkyun January 2011 (has links)
No description available.
244

Study of resonant charge transfer

Rickman, Edward E. January 1985 (has links)
Experimental measurements ol N₂ resonant charge transfer cross sections were performed. It was found that the energy of electrons used to produce the N₂⁺ ions is an important variable with respect to cross section. An examination of the experimental precision was performed and it was found that the precision of measurement was insufficient to determine the exact form of this relationship. The effect of ion energy (collisional energy) was too small to be seen. Modulated detection was used to improve precision and permit measurement at high noise levels. A description of the apparatus is provided. Consideration of other systems and the suitability of their resonant charge transfer reactions for experimental investigation is discussed. Various theoretical models for estimation of cross section were examined. / M.S.
245

Studies of charge transfer in the N+L₂P-N₂P system

Smith, Alphonsa 08 July 2010 (has links)
Total charge-transfer cross sections have been obtained in the N₂⁺ - N₂ system with relative ion energies at seven different values between 9 and 441 eV. Data is obtained to examine the curvature and structural relation between total cross section versus ion energy. The effect of ion beam excitation on the cross sections was studied by varying the electron ionization energy in the mass spectrometer ion source over electron energies at eight different values, between 11.6 and 32.1 eV. The dependence of total cross section on the neutralization chamber gas pressure was examined by obtaining data at four different pressure values from 9.9 to 19.9 x 10⁻⁵ torr. Subsequent data treatment provided 56 different cross section values that are with and theoretical results of other investigators. / Ph. D.
246

Characterization, Modeling of Piezoelectric Pressure Transducer for Facilitation of Field Calibration

Pakdel, Zahra 06 July 2007 (has links)
Currently in the marketplace, one of the important goals is to improve quality, and reliability. There is great interest in the engineering community to develop a field calibration technique concerning piezoelectric pressure sensor to reduce cost and improve reliability. This paper summarizes the algorithm used to characterize and develop a model for a piezoelectric pressure transducer. The basic concept of the method is to excite the sensor using an electric force to capture the signature characteristic of the pressure transducer. This document presents the frequency curve fitted model based on the high frequency excitation of the piezoelectric pressure transducer. It also presents the time domain model of the sensor. The time domain response of the frequency curve fitted model obtained in parallel with the frequency response of the time domain model and the comparison results are discussed. Moreover, the relation between model parameters and sensitivity extensively is investigated. In order to detect damage and monitor the condition of the sensor on line the resonance frequency comparison method is presented. The relationship between sensitivity and the resonance frequency characteristic of the sensor extensively is investigated. The method of resonance monitoring greatly reduces the cost of hardware. This work concludes with a software implementation of the signature comparison of the sensor based on a study of the experimental data. The software would be implemented in the control system. / Master of Science
247

State of Health Estimation System for Lead-Acid Car Batteries Through Cranking Voltage Monitoring

Hyun, Ji Hoon 14 July 2016 (has links)
The work in this thesis is focused on the development and validation of an automotive battery monitoring system that estimates the health of a lead-acid battery during engine cranking and provides a low state of health (SOH) warning of potential battery failure. A reliable SOH estimation should assist users in preventing a sudden battery failure and planning for battery replacement in a timely manner. Most commercial battery health estimation systems use the impedance of a battery to estimate the SOH with battery voltage and current; however, using a current sensor increases the installation cost of a system due to parts and labor. The battery SOH estimation method with the battery terminal voltage during engine cranking was previously proposed. The proposed SOH estimation system intends to improve existing methods. The proposed method requires battery voltages and temperature for a reliable SOH estimation. Without the need for a costly current sensor, the proposed SOH monitoring system is cost-effective and useful for automotive applications. Measurement results presented in this thesis show that the proposed SOH monitoring system is more effective in evaluating the health of a lead-acid battery than existing methods. A low power microcontroller equipped prototype implements the proposed SOH algorithm on a high performance ARM Cortex-M4F based MCU, TM4C123GH6PM. The power dissipation of the final prototype is approximately 144 mW during an active state and 36 mW during a sleep state. With the reliability of the proposed method and low power dissipation of the prototype, the proposed system is suitable for an on-board battery monitoring as there is no on-board warning that estimates the health of a battery in modern cars. / Master of Science
248

DNA Electronics

Zwolak, Michael Philip 13 June 2003 (has links)
DNA is a potential component in molecular electronics. To explore this end, there has been an incredible amount of research on how well DNA conducts and by what mechanism. There has also been a tremendous amount of research to find new uses for it in nanoscale electronics. DNA's self-assembly and recognition properties have found a unique place in this area. We predict, using a tight-binding model, that spin-dependent transport can be observed in short DNA molecules sandwiched between ferromagnetic contacts. In particular, we show that a DNA spin-valve can be realized with magnetoresistance values of as much as 26% for Ni and 16% for Fe contacts. Spin-dependent transport can broaden the possible applications of DNA as a component in molecular electronics and shed new light into the transport properties of this important biological molecule. / Master of Science
249

Automotive Lead-Acid Battery State-of-Health Monitoring System

Kerley, Ross Andrew 05 September 2014 (has links)
This thesis describes the development of a system to continuously monitor the battery in a car and warn the user of an upcoming battery failure. An automotive battery endures enormous strain when it starts the engine, and when it supplies loads without the engine running. Note that the current during a cranking event often exceeds 500 Amperes. Despite the strains, a car battery still typically lasts 4-6 years before requiring replacement. There is often no warning of when a battery should be replaced and there is never a good time for a battery failure. All currently available lead-acid battery monitoring systems use voltage and current sensing to monitor battery impedance and estimate battery health. However, such a system is costly due to the current sensor and typically requires an expert to operate the system. This thesis describes a prototype system to monitor battery state of health and provide advance warning of an upcoming battery failure using only voltage sensing. The prototype measures the voltage during a cranking event and determines if the battery is healthy or not. The voltage of an unhealthy battery will drop lower than a healthy one, and it will not recover as quickly. The major contributions of the proposed research to the field are an algorithm to predict automotive battery state-of-health that is temperature-dependent and a prototype implementation of the algorithm on an ARM processor development board. / Master of Science
250

Biocatalytic Self-Assembly of Supramolecular Charge Transfer Nanostructures Based on n-Type Semiconductor-Appended Peptide

Nalluri, S.K.M., Berdugo, C., Javid, Nadeem, Frederix, P.W.J.M., Ulijn, R.V. 30 April 2014 (has links)
No / The reversible in situ formation of a self-assembly building block (naphthalenediimide (NDI)–dipeptide conjugate) by enzymatic condensation of NDI-functionalized tyrosine (NDI-Y) and phenylalanine-amide (F-NH2) to form NDI-YF-NH2 is described. This coupled biocatalytic condensation/assembly approach is thermodynamically driven and gives rise to nanostructures with optimized supramolecular interactions as evidenced by substantial aggregation induced emission upon assembly. Furthermore, in the presence of di-hydroxy/alkoxy naphthalene donors, efficient charge-transfer complexes are produced. The dynamic formation of NDI-YF-NH2 and electronic and H-bonding interactions are analyzed and characterized by different methods. Microscopy (TEM and AFM) and rheology are used to characterize the formed nanostructures. Dynamic nanostructures, whose formation and function are driven by free-energy minimization, are inherently self-healing and provide opportunities for the development of aqueous adaptive nanotechnology.

Page generated in 0.0609 seconds