191 |
Régulation de l'expression axonale de Caspr2, une molécule d'adhérence associée aux canaux potassiques Kv1 / Axonal expression of Caspr2, a cell adhesion molecule associated with Kv1 potassium channelsPinatel, Delphine 11 December 2015 (has links)
Caspr2 est une molécule d'adhérence impliquée dans diverses pathologies neurologiques telles que l'autisme et l'encéphalite limbique (EL). Les mécanismes pathogéniques restent inconnus. Caspr2 est associé aux canaux potassiques Kv1.1/1.2 aux juxtaparanoeuds et au segment initial (SI). Dans un premier article publié dans Front. Cell. Neurosci. (2015), nous avons mis en évidence que les autoanticorps anti-Caspr2 issus de patients atteints d'EL ciblent majoritairement les neurones GABAergiques. Caspr2 est localisé au niveau des axones et des terminaisons présynaptiques inhibitrices dans les neurones d'hippocampe en culture. De plus, nous avons généré une chimère Caspr2-Fc soluble qui a permis d’identifier TAG-1 comme récepteur de Caspr2 localisé au niveau du compartiment somato-dendritique postsynaptique. Les neurones incubés avec des IgGs de patients, présentent une densité diminuée des clusters de Géphyrine marqueur des post-synapses inhibitrices. Ces anticorps sont d'isotype IgG4 et reconnaissent le plus communément des épitopes de la région Discoïdine-LaminineG1. Un blocage fonctionnel de Caspr2 au niveau synaptique permettrait de comprendre l'hyperexcitabilité associée à l'EL. Dans un second article en préparation, nous avons étudié la régulation de l’expression de Caspr2 au SI. Nous avons utilisé différentes constructions et identifié les domaines LamineG2-EGF1 extracellulaires de Caspr2 requis pour son expression axonale. De plus, les domaines cytoplasmiques de liaison aux protéines 4.1B et PDZ sont impliqués dans la rétention de Caspr2 et MPP2 au SI. Notablement, l'expression de TAG-1 ou ADAM22 induit des effets opposés sur l'expression de Caspr2 au SI. / Caspr2 is a cell adhesion molecule associated with neurologic diseases, such as autism spectrum disorders and limbic encephalitis. The underlying pathogenic mechanisms are still unknown. Caspr2 is associated with the voltage-gated potassium channels Kv1.1/1.2 localized at the axon initial segment (AIS) and the juxtaparanodes in myelinated axons. In a first paper published in Front. Cell. Neurosci. (2015), we characterized anti-Caspr2 autoantibodies from limbic encephalitis (LE) patients and showed that these autoantibodies preferentially targeted GABAergic neurons. Caspr2 was localized along axons and at the presynaptic terminals of inhibitory neurons in hippocampal cultures. Next, we generated a soluble Caspr2-Fc chimera to identify TAG-1 as a receptor for Caspr2 localized at the somato-dendritic compartment and post-synapses. We determined that neurons displayed decreased synaptic gephyrin clusters when incubated with anti-Caspr2 IgGs from LE patients. The autoantibodies mainly bound the N-terminal Discoidin-LamininG1 domains and were of the IgG4 isotype. They may exert functional blocking activity on inhibitory connections underlying the hyperexcitability linked with LE. In a second article in preparation, we examined the regulated expression of Caspr2 at the AIS using deletion and reporter constructs. We mapped the LamininG2 and EGF1 modules in the ectodomain as implicated in the axonal distribution of Caspr2 and the cytoplasmic motifs for binding to 4.1B and PDZ proteins as implicated in Caspr2 AIS retention together with MPP2. Strikingly, co-expression with TAG-1 and ADAM22 induced opposite effects on AIS Caspr2 distribution.
|
192 |
Potential Of Live Recombinant 'Bakers Yeast' As Antigen Delivery Vectors : Application In Generating Antibodies To GFP And Envelope Protein Of JEVUpadhyaya, Bhaskar 11 1900 (has links) (PDF)
No description available.
|
193 |
Monitoramento do vírus do Oeste do Nilo no Brasil. / Surveillance of West Nile virus in Brazil.Tatiana Lopes Ometto 21 February 2014 (has links)
O Vírus do Nilo Ocidental, do inglês West Nile virus (WNV) é um patógeno emergente que é amplamente distribuído na América do Norte e Central. A recente introdução na América do Sul chamou a atenção para a propagação do WNV em países Latino Americanos. O ciclo de transmissão envolve mosquitos, pássaros, cavalos e seres humanos. A avaliação sorológica realizada nestes estudo foi composta por 678 soros de equídeos e 478 soros de aves, realizada por meio do ensaio ELISA de bloqueio específico para WNV e somente as amostras com resultados positivos foram confirmadas por testes de neutralização por redução em placas (PRNTs). A análise molecular foi realizada em soros de 1.241 equídeos saudáveis e em 63 macerados de cérebros de equídeos que morreram de encefalite e obtiveram resultados previamente negativos para outros patógenos. Também testamos swabs de 3.445 aves pelo método molecular, além de amostras de 24 morcegos e 11 onças. As amostras analisadas foram coletadas em diferentes biomas do Brasil. Identificamos pelo ELISA anticorpos para o WNV em treze equídeos e cinco pássaros e o teste de PRNT90 confirmou positividade para o WNV em quatro amostras de equídeos coletadas em 2009 em uma região entre a Amazônia e o Pantanal. Nenhuma das amostras de aves positivas pelo ELISA foram confirmadas por PRNT90. Das 4.784 amostras testadas por RT-PCR, penas duas apresentaram resultados positivos para a detecção, sendo uma ave residente na região do Pantanal e um anatídeo na região do Maranhão, respectivamente. A circulação do WNV é confirmada pela presente pesquisa em larga escala, mesmo na ausência da detecção de casos clínicos. / West Nile virus (WNV) is an emergent pathogen that is widely distributed in North and Central America. The recent introduction in South America has focused attention on the spread of WNV across Southern American countries. The transmission network involves mosquitoes, birds, horses and humans. The serological evaluation of sera from 678 equids and 478 birds was performed using a WNV-specific blocking ELISA, and only the positive results were confirmed by plaque reduction neutralisation tests (PRNTs). Molecular analysis was performed on sera from 1241 healthy equids and on 63 macerates of brains from equids that died of encephalitis and had previously tested negative for other pathogens. We also tested swabs from 3.445 birds, 24 bats and 11 phanteras. The samples analysed were collected in different biomes of Brazil. We identified WNV antibodies by ELISA in thirteen equids and five birds, and PRNT90 confirmed WNV positivity in four equid samples collected in 2009 in an area between the Amazon and the Pantanal. None of the ELISA positive bird samples were confirmed by PRNT90. Of the 4.784 samples tested by RT-PCR, only two were positive for the detection, a resident bird in the Pantanal region and a duck in the region of Maranhão, respectively. WNV circulation is confirmed by this large scale survey even in the absence of detection of clinical cases.
|
194 |
Autoimmune limbic encephalitis and pathological role of anti-CASPR2 autoantibodies on synaptic function / Les encéphalites limbiques auto-immunes et le rôle pathologique des auto-anticorps anti-CASPR2 sur la fonction synaptiquePieters, Alanah 17 October 2019 (has links)
L’encéphalite limbique à auto-anticorps anti-CASPR2 est une atteinte du système nerveux central, caractérisée par la présence des auto-anticorps (autoAcs) dirigé contre CASPR2 dans le sérum et fluide céphalorachidien. La pathologie affecte majoritairement des hommes âgés présentant l’épilepsie comme symptôme prédominant. CASPR2 est une molécule d’adhésion neuronale, connue pour son rôle d’assemblage des canaux Kv1, régulateurs de l’excitabilité neuronale, à la région juxtaparanodale du nœud de Ranvier, une organisation essentielle pour la conduction saltatoire des flux nerveux. Un nombre croissant de données dans la littérature suggère un rôle pour CASPR2 dans des fonctions synaptiques et l’activité neuronale. Ceci pourrait expliquer l’épilepsie, un symptôme neurologique qui trouve son origine dans la perturbation de l’activité neuronale, observée chez les patients avec de l’encéphalite limbique anti-CASPR2. Dans ce travail de thèse, j’ai utilisé des autoAcs de patients comme outil pour investiguer le rôle de CASPR2 dans des neurones normalement développés en culture, permettant aussi d’évaluer l’effet des autoAcs des patients sur les fonctions synaptiques et de révéler des mécanismes physiopathologiques possibles sous-jacents à la maladie. Je me suis d’abord intéressée aux effets des autoAcs des patients sur l’expression et la distribution en surface de CASPR2 et sur l’expression des canaux Kv1.2 dans des neurones hippocampiques matures in vitro. J’ai montré que les neurones inhibiteurs sont positifs pour les canaux Kv1.2 et CASPR2 en surface, et que les autoAcs de patients augmentent l’expression de Kv1.2 et n’induisent pas l’internalisation de CASPR2. Dans un second temps, j’ai analysé les effets des autoAcs de patients sur les synapses excitatrices et inhibitrices dans des neurones hippocampiques immatures et matures in vitro. Dans les neurones immatures, la densité des épines dendritiques et le contenu des récepteurs AMPA sont augmentés, tandis que dans les neurones matures l’altération de la géphyrin suggère une perturbation de la transmission neuronale après traitement avec des autoAcs de patients. Mes résultats permettent de mieux comprendre les fonctions de CASPR2 dans les processus synaptiques et révèlent des mécanismes pathologiques possibles des autoAcs anti-CASPR2 menant à la présentation clinique des patients atteints d’encéphalite limbique anti-CASPR2 / Anti-CASPR2 autoimmune limbic encephalitis is a central nervous system disorder, characterized by the presence of autoantibodies (autoAbs) directed against CASPR2 in the serum and cerebrospinal fluid. Elderly men are mostly affected, with epilepsy being the predominant symptom. CASPR2 is a neuronal cell adhesion molecule, known for its role in gathering Kv1 channels, regulators of neuronal excitability, at the juxtaparanodal region of the node of Ranvier, an essential organization for saltatory conduction of nervous influxes. Increasing sets of data in literature point out a role for CASPR2 in synaptic functions and neuronal activity. This could explain the observed epilepsy, a neurological symptom that finds its origin in disturbed neuronal activity, in patients with anti-CASPR2 autoimmune limbic encephalitis. In this work, I used patients’ autoAbs as a tool to investigate the role of CASPR2 in normally developed cultured neurons which also allowed me to assess the effects of patients’ autoAbs on synaptic functions and reveal possible physiopathological mechanisms underlying the disease. I first assessed the effects of patients’ autoAbs on CASPR2 surface expression and distribution and on Kv1.2 channel expression in mature in vitro hippocampal neurons. I provided evidence that inhibitory neurons are positive for both Kv1.2 channels and surface CASPR2, and that patients’ autoAbs increase Kv1.2 expression and do not induce CASPR2 internalization. Secondly, I analyzed effects of patients’ autoAbs on excitatory and inhibitory synapses in vitro, in immature and mature hippocampal neurons. In immature neurons, dendritic spine densities and AMPA receptor content are increased, while in mature neurons alteration of gephyrin suggests disturbed neuronal transmission after treatment with patients’ autoAbs. My results allow for a better understanding of CASPR2 functions in synaptic processes and unravel possible pathological mechanisms regarding how anti-CASPR2 autoAbs lead to the clinical presentation of patients with anti-CASPR2 autoimmune limbic encephalitis
|
195 |
Identifying Comorbid Risk Factors of West Nile Neuroinvasive Disease in the Ontario Population, 2002-2012, Using Laboratory and Health Administrative DataSutinen, Jessica 12 June 2020 (has links)
Background/Objectives:
West Nile neuroinvasive disease (WNND) is a severe neurological illness that develops in approximately 1% of individuals infected with West Nile virus (WNV). Manifesting most frequently as encephalitis (WNE), meningitis (WNM), or acute flaccid paralysis (WNP), there is no cure for WNND beyond supportive care and rehabilitation, and death or permanent disability are common outcomes. As the virus arrived in North America less than 20 years ago, determinants of severe disease progression following infection are still being explored. This project is the first to examine comorbid conditions as risk factors of WNND in Ontario using a population-based study design. As prevention is the only avenue of defence against WNND, identifying comorbid risk factors of WNND would allow for public health prevention campaigns targeted to high-risk groups. The main objectives of this thesis were to explore whether pre-existing chronic diseases were associated with the development of WNND, or any of its three manifestations (i.e., encephalitis, meningitis, acute flaccid paralysis).
Methods:
This was a retrospective, population-based study including all Ontario residents with a confirmed diagnosis of WNV infection between January 1, 2002 and December 31, 2012. A cohort of individuals with WNV was identified from a provincial laboratory database and individually-linked to health administrative databases. In the WNV cohort, individuals with WNND and 13 comorbid conditions were identified using algorithms based on ICD-10-CA diagnostic codes. Incidence of WNND following WNV infection was then compared among individuals with and without comorbid conditions using relative risks estimated by log binomial regression. Additionally, risk ratios were calculated for associations between specific comorbid conditions and WNND neuroinvasive manifestation (i.e., encephalitis, meningitis, acute flaccid paralysis). Finally, associations between Charlson Comorbidity Index (CCI) scoring and development of WNND was examined through calculation of relative risk using log binomial regression.
Results/Potential Impact:
Risk factors for WNND included male sex (aRR: 1.21; 95% CI: 1.00-1.46) in addition to the combined effect of hypertension and increasing age (5-year intervals) (aRR: 1.16; 95% CI: 1.08-1.24); WNND was also associated with increasing CCI scores; individuals in low, medium, and high categories had increased risk compared to individuals with a score of zero, but the greatest risk was in the high CCI category (aRR: 3.45; 95% CI: 2.25-4.83) Male sex (aRR: 1.32; 95% CI: 1.00-1.76), increasing age (aRR: 1.02; 95% CI: 1.02-1.03), and being immunocompromised (aRR: 2.61; 95% CI: 1.23-4.53) were associated with development of WNE. No risk factors were identified for WNM and WNP. Identification of comorbid risk factors of WNND will allow public health officials to identify high-risk groups and to develop prevention strategies targeted for vulnerable individuals.
|
196 |
Characterization of zoonotic flavi- and alphaviruses in sentinel animals in South AfricaHuman, Stacey 02 January 2012 (has links)
In South Africa (SA), the arboviruses West Nile virus (WNV), Wesselsbron virus (WSLV), Sindbis virus (SINV) and Middelburg virus (MIDV) are considered the most important flavi- and alphaviruses. Clinical presentation and importance of these viruses as animal pathogens in SA remains ambiguous. Although widely endemic in SA, lineage 2 (L2) WNV has rarely been associated with cases of neurological disease and was therefore assumed to be non-pathogenic. However, fatal encephalitis in a foal was diagnosed as L2 WNV in SA, 1996, leading to the thought that L2 cases were possibly being missed. As the above-mentioned arboviruses have the same transmission vectors, Culex mosquitoes for WNV and SINV and Aedes mosquitoes for WSLV and MIDV, co-screening for these viruses is important. We hypothesise that horses could be used as sentinels for virus activity in SA and cases of unexplained neurological disease or fever in animals overlooked, rather than being non-existent. To this end, the study aimed to screen horses displaying unexplained neurological disease or fever with Flavivirus family-specific RT-PCR. Additionally, samples were screened with an Alphavirus family-specific RT-PCR to determine whether co-circulating viruses could be responsible for neurological symptoms in horses. The results would aid in establishing the molecular epidemiology and disease description of each virus, virus distribution and disease seasonality in SA. In total 261 clinical specimens were collected from horses displaying these symptoms (2008 - 2010). Samples were screened with Flavi- and Alphavirus differential diagnostic RT-PCR and acute serum was screened for WNV-IgM and neutralizing antibodies. Serological screening (WNV haemagglutination inhibition, WNV IgG and/or WNV neutralization) identified 62 suspected WNV cases while 34 cases could be confirmed by RT-PCR (16/34), WNV IgM and neutralization assays (18/34) and virus isolation. Neurological disease made up 91% (31/34) of the cases, mortality was calculated at 44% (15/34). Phylogenetically 12/16 RT-PCR positives grouped with L2 SA strains. The first detection of L1 WNV and horse-associated abortion in SA was reported when a pregnant mare aborted her foetus in Ceres, Western Cape. The first cases of WSLV-associated disease in horses were identified by sequencing Flavivirus RT-PCR positive products from 2 horses displaying severe neurological disease; one being fatal. This suggests missed cases in the past. To elucidate virulence factors of WSLV, a human encephalitic strain AV259, was subjected to Roche FLX454 full-genome sequencing and compared to a previously sequenced febrile strain (H177). Several structural amino acid changes occurred in proteins NS2A, NS4B and NS5 of AV259; necessary for Flavivirus replication. Phylogenetically AV259, clinical horse strains and WSLV strains previously isolated from animals, humans and arthropods were similar. Additionally and in concurrence with other studies, WSLV clusters with Sepik virus (SEPV) within the YFV group of the Flaviviridae family. Alphavirus screening identified 17 cases; 6/17 SINV and 11/17 MIDV. SINV-WNV co-infections resulted in fatal neurological disease; remaining SINV cases recovered after displaying fever and/or mild neurological disease. MIDV symptoms varied from “three-day-stiffness” to severe neurological symptoms, with 2 fatalities. Co-infections with equine encephalosis and Shuni virus were identified. MIDV strains identified in this study were phylogenetically distinct from older strains. Results highlight the use of horses as sentinels for virus activity and suggest that these arboviruses may have been previously missed as horse pathogens in Africa. These viruses should be considered as the aetiological agents in animals displaying unexplained neurological or hepatic disease, fevers or abortions. Awareness of flavi- and alphaviruses and the disease manifestation they may have in horses was illustrated. These findings suggest that a WNV vaccine may be beneficial for horses in SA. / Dissertation (MSc)--University of Pretoria, 2011. / Medical Virology / Unrestricted
|
197 |
Anti-NMDA receptor encephalitis and overlapping demyelinating disorder in a 20-year old female with borderline personality disorder: proposal of a diagnostic and therapeutic algorithm for autoimmune encephalitis in psychiatric patients “case report”Weiss, David, Kertzscher, Lisa, Degering, Magdalena, Wozniak, David, Kluge, Michael 18 February 2022 (has links)
Background: Anti-NMDA receptor encephalitis (NMDAR-E) is an autoimmune encephalitis (AE) mainly affecting young females. It typically presents with isolated psychiatric symptoms (e.g. depressed mood) at first and neurological abnormalities (e.g. seizures, movement disorders) only develop later. Thus, there is a high risk of overlooking NMDAR-E in patients with preexisting psychiatric illness due to symptom overlap in the prodromal period of the disease when treatment is most effective. Although rare, concomitant or sequential development of a demyelinating disorder is increasingly recognized as an associated disease entity (overlap syndrome), with immediate diagnostic and therapeutic implications.
Case presentation: We report a patient with a borderline personality disorder (BPD), which developed NMDAR-E and an overlapping demyelinating disorder with anti-Myelin oligodendrocyte glycoprotein (MOG) -IgG positivity. The initial clinical presentation with predominantly affective symptoms (e.g. mood lability, anxiety, depressed mood) lead us to suspect an exacerbation of the BPD at first. However, acute changes in premorbid behavior, newly developed psychotic symptoms and memory deficits lead us to the correct diagnosis of an AE, which was further complicated by the development of a demyelinating disorder. As a result of impaired illness awareness and psychosis, diagnostic and treatment was difficult to carry out. The symptoms completely remitted after treatment with methylprednisolone 1 g daily for 5 days and 5 cycles of plasma exchange.
Conclusions: Continuous awareness for neuropsychiatric clinical warning signs in patients with a pre-diagnosed psychiatric disorder is important for a timely diagnosis. Therefore, we believe that the diagnostic and therapeutic algorithm provided here, for the first time specifically addressing patients with preexisting psychiatric illness and integrating overlap syndromes, can be a useful tool. Moreover, in order to timely perform diagnostics and treatment, judicial approval should be obtained rapidly.
|
198 |
Seroprevalence and Risk Factors for EquineWest Nile Virus Infections in Eastern Germany, 2020Ganzenberg, Stefanie, Sieg, Michael Sieg, Ziegler, Ute, Pfeffer, Martin, Vahlenkamp, Thomas W., Hörügel, Uwe, Groschup, Martin H., Lohmann, Katharina L. 31 August 2023 (has links)
West Nile virus (WNV) infections were first detected in Germany in 2018, but information
about WNV seroprevalence in horses is limited. The study’s overall goal was to gather information
that would help veterinarians, horse owners, and veterinary-, and public health- authorities
understand the spread of WNV in Germany and direct protective measures. For this purpose, WNV
seroprevalence was determined in counties with and without previously registered WNV infections
in horses, and risk factors for seropositivity were estimated. The cohort consisted of privately
owned horses from nine counties in Eastern Germany. A total of 940 serum samples was tested by
competitive panflavivirus ELISA (cELISA), and reactive samples were further tested by WNV IgM
capture ELISA and confirmed by virus neutralization test (VNT). Information about potential risk
factors was recorded by questionnaire and analyzed by logistic regression. A total of 106 serum
samples showed antibodies against flaviviruses by cELISA, of which six tested positive for WNV
IgM. The VNT verified a WNV infection for 54 samples (50.9%), while 35 sera neutralized tick-borne
encephalitis virus (33.0%), and eight sera neutralized Usutu virus (7.5%). Hence, seroprevalence
for WNV infection was 5.8% on average and was significantly higher in counties with previously
registered infections (p = 0.005). The risk factor analysis showed breed type (pony), housing in
counties with previously registered infections, housing type (24 h turn-out), and presence of outdoor
shelter as the main significant risk factors for seropositivity. In conclusion, we estimated the extent of
WNV infection in the resident horse population in Eastern Germany and showed that seroprevalence
was higher in counties with previously registered equine WNV infections.
|
199 |
Five Degrees: A Short StoryHinds, Cassia E 01 January 2016 (has links)
An interwoven fiction piece representing four perspectives and its effects on self-awareness. The most effective way to blur the line of self in this structure is to braid the minds, voices, and stories, of each perspective. With a focal point where all the voices eventually drift to being the frame of the story, there will be a unique distance between the stories. This thesis explores the effects of different types of mental and physiological illnesses through fiction, highlighting the effect of perception on fact and the perspective of the mentally ill.
|
200 |
Mechanisms of IFN-gamma-mediated Resistance against Development of Toxoplasmic EncephalitisWang, Xisheng 07 March 2007 (has links)
Toxoplasma gondii, an obligate intracellular protozoan parasite, establishes a latent, chronic infection by forming cysts preferentially in the brain after replication of tachyzoites in various organs during the acute stage of infection. Chronic infection with T. gondii is one of the most common parasitic diseases in humans. The immune system is required for maintaining the latency of chronic infection. Reactivation of infection can occur in immunocompromised individuals, such as AIDS patients, which results in the development of life-threatening toxoplasmic encephalitis (TE). IFN-gamma-dependent, cell mediated immune responses play an essential role in preventing the reactivation of chronic infection of T. gondii in the brain. In my dissertation study, we examined the mechanisms of IFN-gamma-mediated prevention of TE by using models of reactivation of chronic infection in BALB/c mice. This strain of mouse is genetically resistant to T. gondii infection and establishes a latent chronic infection as do immunocompetent humans, and therefore provides an excellet model for this purpose.
Our laboratory previously demonstrated that both T cells and IFN-gamma-producing non-T cells are required for genetic resistance of BALB/c mice against development of TE. However, the function of T cells required for the resistance is still unclear. Therefore, in the present study, we examined whether IFN-gamma production or perforin-mediated cytotoxicity of T cells play an important role in their protective activity against TE. Immune T cells were obtained from infected IFN-gamma-knockout (IFN-g-/-), perforin-knockout (PO), and wild-type (WT) BALB/c mice, and transferred into infected, sulfadiazine-treated athymic nude mice which lack T cells but have IFN-gamma-producing non-T cells. Control nude mice that had not received any T cells developed severe TE due to reactivation of infection and died after discontinuation of sulfadiazine treatment. Animals that had received immune T cells from either PO or WT mice did not develop TE and survived. In contrast, nude mice that had received immune T cells from IFN-gamma-/- mice developed severe TE and died as early as control nude mice. T cells obtained from spleens of the animals that had received either PO or WT T cells both produced large amounts of IFN-gamma following stimulation with T. gondii antigens in vitro. In addition, the amounts of IFN-gamma mRNA expressed in the brains of PO T-cell recipients did not differ from those of WT T-cell recipients. These results indicate that IFN-gamma production, but not perforin-mediated cytotoxic activity, by T cells is required for prevention of TE in genetically resistant BALB/c mice.
In our attempt to identify a T cell population(s) that produces IFN-gamma in the brain and plays an important role for prevention of TE, we analyzed T cell receptor (TCR) Vb chain usage in T cells expressing IFN-gamma in the brains of infected BALB/c mice. We found T cells bearing TCR V beta8 chain to be the most frequent IFN-g-producing population in the brains of infected animals. To examine the role of IFN-gamma production by this T cell population for prevention of TE, V beta8+ immune T cells purified from spleens of infected BALB/c and IFN-g-/- mice were transferred into infected, sulfadiazine-treated athymic nude mice. After discontinuation of sulfadiazine treatment, control nude mice that had not received any T cells and animals that had received Vb8+ T cells from IFN-g-/- mice all died due to reactivation of infection (TE). In contrast, animals that had received the cells from WT mice survived. These results indicate that IFN-gamma production by Vb8+ T cells in the absence of any other T cell population can prevent reactivation of infection. Thus, V beta8+ T cells play a crucial role in genetic resistance of BALB/c mice to TE through their production of IFN-gamma. When V beta8+ immune T cells were divided into CD4+ and CD8+ subsets, a potent protective activity was observed only in the CD8+ subset whereas a combination of both subsets provided greater protection than did the CD8+Vb8+ population alone. These results indicate that CD8+ subset of V beta8+ T cells is a major afferent limb of IFN-gamma-mediated resistance of BALB/c mice against TE, although the CD4+ subset of the T cell population works additively or synergistically with the CD8+V beta8+ population.
T cells need to enter into the brains of infected mice to demonstrate their protective activity against TE. This migration is mediated, in part, by endothelial adhesion molecules. Since IFN-gamma is essential for preventing reactivation of chronic infection with this parasite in the brain, we examined whether this cytokine plays an important role in expression of lymphocyte and endothelial adhesion molecules and recruitment of T cells into the brain during chronic infection with T. gondii using IFN-g-/- and WT BALB/c mice. Although the number of cerebral vessels expressing intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) increased in both WT and IFN-g-/- mice following infection, there were more VCAM-1+ vessels in brains of infected WT than infected IFN-g-/- mice; in contrast, numbers of ICAM-1+ vessels did not differ between strains. We did not detect endothelial E-selectin, P-selectin, MAdCAM-1 or PNAd in any of the brains. Significantly fewer CD8+ T cells were recruited into brains of infected IFN-g-/- than WT mice. Treatment of infected IFN-g-/- mice with recombinant IFN-gamma restored the expression of VCAM-1 on their cerebral vessels and recruitment of CD8+ T cells into their brains, confirming an importance of this cytokine for up-regulation of VCAM-1 expression and CD8+ T cell trafficking. In infected WT and IFN-g-/- animals, almost all cerebral CD8+ T cells had an effector/memory phenotype (LFA-1high, CD44high and CD62Lneg) and approximately 38% were positive for a4b1 integrin (the ligand for VCAM-1). In adoptive transfer of immune spleen cells, pre-treatment of the cells with a monoclonal antibody against a4 integrin markedly inhibited recruitment of CD8+ T cells into the brain of chronically infected wild-type mice. These results indicate that IFN-g-induced expression of endothelial VCAM-1 and its binding to a4b1 integrin on CD8+ T cells is important for recruitment of the T cells into the brain during the chronic stage of T. gondii infection. Since we found strong expression of ICAM-1 on endothelia and LFA-1 on T cells in the brains of infected mice, LFA-1/ICAM-1 interaction, in addition to a4b1 integrin/VCAM-1 interaction, may also be involved in this process. As mentioned earlier, CD8+ T cells are crucial for prevention of TE in BALB/c mice. Therefore, IFN-gamma-mediated expression of VCAM-1 and its binding to a4b1 integrin for recruitment of CD8+ T cells may play a critical role in genetic resistance of BALB/c mice to development of TE. / Ph. D.
|
Page generated in 0.0544 seconds