• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 1
  • Tagged with
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L’endoréduplication dans le développement du fruit de tomate : de la structure à la croissance cellulaire

Bourdon, Matthieu 13 January 2011 (has links)
Le développement du fruit de tomate s’accompagne d’un phénomène d’endopolyploïdisation(amplification de l’ADN en l'absence de mitose) associé à la croissance cellulaire. Au stade vert mature huit niveaux de ploïdie sont présents (2C à 256C) dans le péricarpe.Une première partie du travail a porté sur l’étude de la distribution spatiale des niveaux de ploïdie dans ce tissu. Cet objectif a nécessité la mise au point d’une méthode originale de détermination de la ploïdie in situ reposant sur la technique de BAC-FISH. Nous avons montré que les cellules les plus polyploïdes se situent dans les assises internes du péricarpe, et qu’elles sont aussi les plus grandes. Ces cellules semblent déjà formées au moment de l’anthèse. Cette cartographie de la ploïdie associée à une analyse de la taille cellulaire a également montré que la taille finale des cellules ne dépend pas uniquement de leur niveau de ploïdie mais également de leur position dans le péricarpe. Enfin, nos résultats suggèrent que l’endopolyploïdisation précède la croissance cellulaire.Dans une deuxième partie du travail, nous avons étudié la structure des noyaux en microscopie à fluorescence et électronique. L’endopolyploïdisation affecte profondément la taille et la forme des noyaux, qui acquièrent un volume important et une forme complexe avec de profondes invaginations. La taille du nucléole augmente avec celle du noyau, ce qui suggère une activité de transcription accrue. De plus, la présence de nombreuses mitochondries à proximité des noyaux polyploïdes suggère une forte activité métabolique en lien avec l’endopolyploïdisation. L’utilisation de la méthode BAC-FISH a permis également de montrer que la polyploïdie se faisait par endoreduplication avec la formation de chromosomes polytènes.Dans une troisième partie nous avons cherché, en criblant une banque de mutants Micro-Tom, à identifier des lignées affectées dans l’endoreduplication afin d’étudier l’impact de ce phénomène sur la vitesse de croissance du fruit. Nous avons caractérisé plusieurs familles dont les niveaux moyens de ploïdie variaient par rapport à la lignée de référence. Une de ces familles présente un phénotype stable au cours de deux générations, avec une augmentation d’au moins 30 % de la ploïdie moyenne et une augmentation de la taille des cellules du péricarpe. Cependant cette famille présentant aussi un développement relativement parthénocarpique de ses fruits, sa caractérisation n’a pas pu être poursuivie dans le cadre de ce travail. / Tomato fruit development includes massive endopolyploidisation events (DNA duplication inthe absence of mitoses) within pericarp cells, in which 8 DNA levels from 2 C to 256 C are detected atmature green stage.The first part of this work dealt with the study of the spatial distribution of ploidy levels inpericarp. To achieve this purpose, a new method for in situ ploidy assessment was set up using aBAC-FISH protocol. The main results are 1/ the most polyploid cells are located in central mesocarpcell layers; 2/ the most polyploid cells are also the largest cells; 3/ these cells are likely to be alreadypresent in ovary at anthesis. Ploidy mapping has also shown that the final cell size does not dependonly on ploidy level but also on cell location in pericarp, and that endopolyploidization is likely set up intissues before cell expansion.The structure of the polyploid nucleus was studied by using fluorescence microscopy andelectron microscopy. Endopolyploidization profoundly modifies the size and shape of nuclei, whichbecome much larger and acquire a complex shape with deep invaginations. Nucleolus size increases,which is likely related to transcriptional increase. Moreover, the presence of numerous mitochondria inthe close vicinity of the nuclear membrane reinforces the hypothesis of increased nuclear andmetabolic activity in polyploid cells. The BAC-FISH in situ method for ploidy assessment also revealedthat endopolyploidization proceeded through polyteny.In the last part of this work, we screened a tomato Micro-Tom tilling bank for mutants affectedin endopolyploidization. The aim was to use tomato lines with distinct ploidy levels to check theinfluence of ploidy on fruit growth rate. Several mutant families were identified with moderatelyincreased ploidy levels. One of these families exhibited transmissible phenotype through 2generations, with ploidy increased by ca. 30 % and increased pericarp cell size. As these mutants hadalso a strongly pronounced parthenocarpic phenotype, their characterization could not be furtheradvanced in the frame of this work.
2

Effet du stress hybride sur la croissance de la tomate : une étude multi-échelle : de la cellule à la plante entière pour une meilleure compréhension des interactions entre les échelles / Effect of water stress on tomato growth : a multi-scale analysis : from cell to whole plant for a better understanding of interactions between scales

Koch, Garance 14 December 2018 (has links)
Comme pour les autres organes multicellulaires, la croissance et le développement de la feuille et du fruit sont caractérisés par la coordination de la division et de l'expansion des cellules qui sont des processus majeurs de la croissance. Les cellules du péricarpe du fruitcharnu connaissent également des endocycles successifs entrainant ainsi une augmentationimportante de la ploïdie des cellules. Il existe un lien évident entre la croissance cellulaire etl'endoréduplication, cependant, celui-ci est encore mal connu du point de vue fonctionnel. Lesprocessus cellulaires interagissent fortement durant le développement de l’organe et sont liésaux flux de carbone et d'eau dans la plante. L’objectif de ce travail de thèse est de mieuxcomprendre le contrôle multi-échelles de la croissance des feuilles et des fruits chez la tomate(Solanum lycopersicum Mill.) et de la plasticité de leur croissance en réponse à des stresshydriques du sol.L’étude a essentiellement porté sur le génotype de tomate cerise Solanum lycopersicum, cv.West Virginia 106 (WVa 106) qui a été cultivé dans différentes conditions d’irrigation grâce àdes systèmes automatisés développés pour cette étude. La réponse au déficit hydrique du sol aété étudiée à différentes échelles d’observation, (tissu, organe, plante entière) et à différentsstades de croissance de la plante en adaptant des protocoles utilisés jusque-là pour des plantesà croissance déterminée et des feuilles simples. Deux génotypes transgéniques modifiés sur ungène de régulation du cycle cellulaire ont aussi été cultivés afin de faire varier les traits liés àla croissance cellulaire et mieux comprendre leurs liens. Les cinétiques de croissance desorganes source et puits que sont la feuille et le fruit aux échelles cellulaire et tissulaire ontaussi été décrites. Les résultats ont apporté des éléments nouveaux sur les coordinations entreles différents processus étudiés et conforté des hypothèses déjà présentes dans la littérature.Ces travaux ont permis de fournir un jeu de données original sur les effets du stress hydriquesur les processus cellulaires (division, expansion, endoréduplication) impliqués dans lacroissance de la feuille et du fruit chez la tomate et, de mieux comprendre leur interactions àplus large échelle, la plante dans sa globalité. En perspectives, ce jeu de données pourrapermettre de faire évoluer un modèle de développement du fruit charnu en condition optimaleet tester sa généricité sur un autre organe, la feuille. Il ouvre des pistes sur la réflexion autourde la modélisation de la plasticité de la plante en réponse au stress hydrique. / As for other multicellular organs, growth and development of leaves and fruits arecharacterized by cell division and expansion. Cell division and expansion are two maingrowth processes. Fleshy fruit pericarp cells also include successive endocycles that providean important increase in cell ploidy. There is a clear link between cell growth andendoreduplication. However, this link is still unclear from a functional point of view. Cellularprocesses interact during organ development and are related to plant water and carbon flows.The objective of this thesis is to give insights into the multi-scale control of leaves and fruitsgrowth in tomato (Solanum lycopersicum Mill.) and the plasticity of growth-related traits inresponse to soil water stresses.This study mainly focused on cherry tomato Solanum lycopersicum, cv. West Virginia 106(WVa 106). This genotype was cultivated in different conditions of watering regimes withautomated systems developed for this study. Soil water deficit response was studied atdifferent observation scales (tissue, organ, whole plant) and at different plant growth stagesthanks to protocols that were used until now on plants with determinate growth and simpleleaves that were modified for this study. Two transgenic genotypes modified on a cell cycleregulation gene were also cultivated to create variations on growth related traits for a betterunderstanding of their relationships. Multi-scale growth kinetics of source and sink organs(leaf and fruit) were also analyzed. Results have brought new elements about growth-relatedtraits coordination and have reinforced a few hypotheses already presented in scientificpapers. This work has supplied an original dataset on water stress effects on cellular processes(division, expansion, endoreduplication) related to leaf and fruit growth in tomato in thecontext of the plant as a whole. In perspectives, this dataset may allow to further develop anexisting model of fleshy fruit development which was first developed for fruits of plantsgrowing optimal condition. Genericity of this model will be tested on another organ, the leaf.This work also opens some tracks about how the model could be modified when growth islimited by water stress.
3

Etude du rôle des inhibiteurs de kinases-cycline-dépendantes (CKI) de la classe des SIM/SMR en réponse au stress abiotique chez Arabidopsis thaliana / Study of the role of cyclin-dependant kinase inhibitor (CKI) of the class of SIM/SMR in response to abiotic stress in Arabidopsis thaliana

Lamy, Geneviève 29 May 2013 (has links)
Chez Arabidopsis thaliana, les protéines SIAMESE-RELATED (SIM/SMR1 à 13) forment une famille plante-spécifique d’Inhibiteurs de Kinase Cycline-dépendante (CKI), homologue des Kip-Related Proteins. SIM et SMR1 sont des régulateurs positifs de la transition du cycle mitotique vers l’endoréplication. L’expression des gènes SIM/SMR est induite en réponse àdes stress. L’un des stress abiotiques majeurs pour les plantes est la sécheresse. Les SIM/SMR pourraient être dégradées par la voie de la protéolyse spécifique de l’Ubiquitin Proteasome System (UPS). Les SIM/SMR sont de bons candidats pour relier l'activité du cycle cellulaire aux stimuli de l'environnement. Ce travail a démontré l’implication de la protéolyse UPS dans le contrôle posttraductionnel de tous membres SIM/SMR testés. Il démontre que SIM, SMR2 et SMR1 sont nécessaires à l’endoréplication des cellules foliaires. Lors d’un stress hydrique, l’expression des gènes SIM, SMR1, SMR3 et SMR5 est induite. Le profil spatio-temporel de ces inductions a mis en évidence deux groupes de gènes avec des fonctions distinctes. Les mutants sim, smr5 et sim.smr1.smr2 sont hypersensibles au stress hydrique. / In Arabidopsis thaliana, the SIAMESE-RELATED proteins (SIM/SMR1 to 13) are a plantspecific family of Cyclin-dependent Kinase Inhibitors (CKIs), homologous to the Kip-Related Proteins. SIM and SMR1 are positive regulators of the switch from mitotic cycle to endoreplication. The expression of SIM/SMRs genes is induced in response to stress. One of the major abiotic stress for plants is the drought stress. The SIM/SMRs could be degraded through the specific proteolysis of Ubiquitin Proteasome System (UPS). The SIM/SMRs proteins are good candidates to link cell cycle activity with environmental stimuli.This research work has shown the involvement of the UPS proteolysis in the posttranslational control of all the tested members of the SIM/SMR family. It also shows that SIM, SMR2 and mostly SMR1 are required in endoreplication of leaf cells. During drought stress, the expression of SIM, SMR1, SMR3 and SMR5 genes is induced. The spaciotemporal pattern of those inductions revealed two groups of genes with distinct functions. In addition, the sim, smr5 and sim.smr1.smr2 loss-of-function mutants tested are hypersensitive to drought stress.
4

Characterization of auxin-ethylene interactions during the tomato fruit development : role of Sl-IAA17 gene / Caractérisation des interactions auxine-éthylène pendant le développement du fruit de tomate : rôle du gène Sl-IAA17

Su, Liyan 10 October 2014 (has links)
Les interactions entre l’auxine et l’éthylène sont complexes et contrôlent divers processus de développement des plantes tels que l’élongation racinaire ou la différentiation des racines secondaires. Mais, il existe peu d’études montrant le rôle des interactions entre ces deux hormones au cours du développement et de la maturation des fruits. Le changement de couleur des fruits chez la tomate est une caractéristique de la maturation qui est associée à la fois à la dégradation des chlorophylles et à l’accumulation des caroténoïdes. Dans ce travail, l’application exogène d’auxine et d’éthylène a montré l’impact de ces deux hormones sur la maturation de la tomate et en particulier sur le changement de couleur des fruits. Nous avons montré que l’acide indol-acétique (IAA) retarde la transition du vert à l’orange/rouge, alors que l’éthylène, apporté sous la forme d’acide 1-aminocyclopropane-1-carboxylique (ACC), son précurseur, accélère la coloration des fruits. Par contre, l’inhibition de l’auxine par le PCIB, un antagoniste de l’auxine, provoque les mêmes effets que l’éthylène. L’analyse des caroténoïdes montre que l’ACC comme le PCIB augmente la teneur en lycopène et diminue la teneur en carotène alors que l’IAA provoque l’effet inverse. L’étude de l’accumulation des ARNs messagers de plusieurs gènes clés de la voie de biosynthèse des caroténoïdes a montré que le gène β-lcy codant pour la lycopène cyclase joue un rôle clé dans le contrôle de la biosynthèse et de l’accumulation des pigments et que son expression est fortement dépendante de l’équilibre auxine-éthylène. D’autre part, nos résultats ont montré que le gène rin joue un rôle important dans le contrôle de l’expression des gènes clés de la voie de biosynthèse des caroténoïdes. Pour avoir une meilleure vision des gènes différentiellement exprimés par l’auxine et l’éthylène au cours de la maturation, l’analyse du transcriptome des fruits traités par de l’ACC et de l’IAA a été réalisée par RNA-Seq au laboratoire. Parmi les facteurs de transcriptions étudiés, le gène Sl-IAA17, un membre de la famille des AUX/IAA, est fortement affecté par l’auxine et l’éthylène. La caractérisation fonctionnelle du gène Sl-IAA17 pendant le développement du fruit a été réalisée en créant des lignées transgéniques sous exprimant ce gène en mettant en œuvre la stratégie des ARNs interférents. Ces lignées présentent un phénotype caractéristique produisant des fruits de plus gros calibre que celui des fruits sauvages. Les analyses histologiques des tissus des fruits ont montré que ce phénotype est associé à un péricarpe plus épais. En microscopie, nous avons constaté que l’augmentation de l’épaisseur du péricarpe dans les lignées transgéniques n’était pas due à un plus grand nombre de cellules mais à l’augmentation de la taille des cellules. Enfin, nous avons observé que l’expansion des cellules dans les fruits transgéniques est étroitement couplée avec des niveaux de ploïdie plus élevés que dans les fruits sauvages, ce qui suggère une stimulation du processus endoréduplication. Ces résultats démontrent très clairement l’existence d’une étroite relation entre la signalisation de l’auxine, le contrôle de la taille du volume cellulaire et le processus d’endoréduplication. En conclusion, les résultats présentés fournissent des connaissances nouvelles sur les interactions entre l’auxine et l’éthylène au cours du développement du fruit et en particulier au cours de la transition fruit immature - fruit mature. De plus, ils apportent des éléments nouveaux sur la connaissance du rôle de la voie de signalisation de l’auxine dans le contrôle du développement des fruits charnus et en particulier sur la fonction de certains membres des AUX/IAA sur la détermination du volume et du poids des fruits. / The interaction between auxin and ethylene are complex and control various processes of plant development, such as root elongation or differentiation of secondary roots. But there are few studies showing the role of interactions between these two hormones during development and maturation of the fruit. The color change in the tomato fruit is a feature of the maturation that is associated with the degradation of the chlorophyll and carotenoid accumulation. In this work, the application of exogenous auxin and ethylene showed the impact of these two hormones in the tomato ripening and in particular the change of fruit color. We have shown that indole-acetic acid (IAA) delays the transition from green to orange / red, while ethylene, supplied as 1-aminocyclopropane-1-carboxylic acid form (ACC), its precursor, accelerated this transition. However the auxin inhibition by p-chlorophenoxy isobutyic acid (PCIB), an auxin antagonist, caused the same effects similar to ethylene. The carotenoid analysis showed that the ACC and PCIB increase the lycopene content and reduced the carotene content while IAA causes the opposite effect. The study of the accumulation of mRNAs for several key genes of the carotenoid biosynthetic pathway has shown that the gene β-lcy encoding lycopene cyclase plays a key role in the control of biosynthesis and accumulation of pigments and that its expression is highly dependent on the auxin-ethylene balance. In addition, our results showed that the rin gene plays an important role in controlling the expression of the key carotenoid biosynthetic pathway genes. To get a better view of differentially expressed genes by auxin and ethylene during ripening, transcriptome analysis of fruits treated with ACC and IAA was performed by a preliminary RNA-Seq approach. Among the transcription factors studied in the laboratory, the gene Sl-IAA17, a member of the family of Aux/IAA was affected by auxin and ethylene. Functional characterization of Sl-IAA17 gene during fruit development was performed by creating transgenic lines under-expressing this gene by RNAi. These lines display a phenotype producing bigger fruit than wild type. Histological analysis of the tissues showed that fruit phenotype is associated with a thicker pericarp. By microscopy, we observed that increasing the thickness of the pericarp in the transgenic lines was not due to a greater number of cells but to the increase in cell size. Finally, we observed that cell expansion in transgenic fruit is tightly coupled with higher ploidy levels than wild fruits, suggesting a stimulation of the endoreduplication process. These results clearly demonstrate the existence of a close relationship between the auxin signal, the control cell size, fruit volume and the endoreduplication process. In conclusion, the results provide new insights into the interactions between auxin and ethylene during fruit development and in particular during the transition immature fruit, mature fruit. In addition, they provide new information on the understanding of the role of the signaling pathway of auxin in controlling the development of fleshy fruits and in particular on the basis of certain members of the AUX/IAA on regulating volume and fruit weight.
5

Caractérisation fonctionnelle des inhibiteurs de Cyclin-Dependent Kinase (CDK) dans le fruit de tomate (Solanum lycopersicum) / Functional characterization of Cyclin-Dependent Kinase (CDK) inhibitors in tomato fruit (Solanum lycopersicum)

Nafati, Mehdi 18 June 2010 (has links)
Au sein de l’unité mixte de recherche 619 de l’Institut National de Recherche Agronomique, le groupe « Organogénèse du Fruit et Endoréduplication » étudie les acteurs moléculaires prenant part au contrôle du cycle cellulaire dans le fruit de tomate. L’objet de la présente thèse est l’étude de l’inhibiteur du cycle cellulaire Kip-Related Protein, et son rôle durant le développement du fruit. Identification de motifs protéiques fonctionnels chez l’Inhibiteur de Kinase Cycline-Dependent SlKRP1 chez Solanum lycopersicum : Leur rôle dans les interactions avec des partenaires du cycle cellulaire Les Kip-related proteins (KRPs) jouent un rôle majeur dans la régulation du cycle cellulaire. Il a été montré qu’ils inhibent les complexes CDK/Cyclin et ainsi bloquent la progression du cycle cellulaire. Malgré leur manque d’homologie avec leurs homologues animaux au delà de leur motif de liaison CDK/Cyclin, localisé à l’extrémité C-terminal de la protéine dans les séquences de plante, des études antérieurs ont montré la présence de motifs conservés spécifiques aux plantes chez certaines KRPs. Nous n’avons cependant que peu d’information concernant leur fonction. Nous montrons ici que les KRPs sont distribués en deux sous groupes phylogénétiques, et que chaque sous-groupe dispose de courts motifs spécifiques conservés. Les KRPs du sous-groupe 1 disposent ainsi de six motifs conservés entre eux. Utilisant SlKRP1, qui appartient au sous-groupe 1, nous avons identifié des motifs responsables de la localisation de la protéine et de ses interactions protéine-protéine. Nous montrons que le motif 2 est responsable de l’interaction avec CSN5, une sous-unité du complexe signalosome, et que le motif 5 a un effet redondant avec le motif 3 pour ce qui est de la localisation sub-cellulaire de la protéine. Nous montrons de plus que SlKRP1 est capable de guider SlCDKA1 et SlCycD3;1 vers le noyau, et ce même en l’absence du motif de liaison CDK/Cycline précédemment référencé. Ce nouveau site d’interaction est probablement localisé dans la partie centrale de la séquence de SlKRP1. Ces résultats apportent de nouveaux indices quant au rôle de la partie encore méconnue de cette protéine. La surexpression de SlKRP1 dans le mésocarpe de tomate détruit la proportionnalité entre endoréduplication et taille cellulaire Le fruit est un organe spécialisé résultant du développement de l’ovaire après pollinisation et fertilisation, et qui offre un environnement adéquat pour la maturation des graines et leur dispersion. De part leur importance en nutrition humaine et leur importance économique, les espèces à fruit charnu ont été le sujet d’étude développementales principalement orientée vers la formation de l’ovaire, la mise à fruit et la maturation du fruit. La phase de croissance du fruit a été beaucoup moins étudiée, bien que la division cellulaire et la croissance cellulaire prenant place durant cette période soient cruciales à la détermination de la taille finale du fruit, ainsi que de sa masse et sa forme. Le développement du mésocarpe du fruit de tomate se déroule par la succession d’une phase de division cellulaire suivie d’une phase d’expansion cellulaire associée à l’endoréduplication, menant à la formation de cellules géantes (jusqu’à 0,5mm) avec des niveaux de ploïdie pouvant atteindre 256C. Bien qu’une relation évidente entre endoréduplication et croissance cellulaire ait été montrée par de nombreux exemples chez les plantes, le rôle exact de l’endoréduplication n’a toujours pas été élucidé, étant donné que la plupart des expériences induisant une modification du niveau d’endoréduplication dans la plante affectaient aussi la division cellulaire. Nous avons étudié la cinétique du dévelopement du mésocarpe de tomate au niveau morphologique et cytologique et avons étudié l’effet de la diminution du niveau d’endoréduplication sur le dévelopement du fruit en sur-exprimant l’inhibiteur du cycle cellulaire Kip-Related Protein 1 (SlKRP1) spécifiquement dans les cellules en croissance du mésocarpe de tomate. Nous montrons une proportionnalité directe entre endoréduplication et taille cellulaire durant le développement normal du fruit, ce qui nous a permis de construire un modèle de développement du mésocarpe définissant l’épaisseur du péricarpe en ne prenant en compte que le nombre de divisions cellulaires et le nombre de tours d’endoréduplication. De façon surprenante, les mésocarpes de tomate affectés dans leur niveau d’endoréduplication par la sur-expression de SlKRP1 ne sont pas affectés au niveau de la taille des cellules ou du fruit, ni dans leur contenu métabolique. Nos résultats démontrent pour la première fois qu’alors que le niveau de ploïdie est étroitement lié avec la taille des cellules et du fruit, l’endoréduplication n’est pas responsable de la croissance cellulaire du mésocarpe de tomate. / Within the Joint Research Unit 619 of the National Institute of Agronomic Research (INRA), the group "Organogenesis of the Fruit and endoreduplication" examines the molecular players involved in cell cycle control in tomato fruit. The purpose of this thesis is the study of the cell cycle inhibitor Kip-Related Protein and its role during fruit development. Identification of protein motifs in the functional inhibitor of Cyclin-Dependent Kinase in Solanum lycopersicum SlKRP1: Their role in interactions with partners in the cell cycle The Kip-related proteins (KRPs) play a major role in the regulation of cell cycle. It has been shown to inhibit the CDK / Cyclin and thus block cell cycle progression. Despite their lack of homology with their counterparts in animals beyond their binding motif CDK / Cyclin, located at the C-terminal protein sequences in the plant, previous studies have shown the presence of conserved motifs plant specific in some KRPs, but there is little information about their function. We show here that the KRPs are distributed into two phylogenetic groups, and that each subgroup has specific short conserved motifs. The KRPs from subgroup 1 have six conserved motifs. Using SlKRP1, which belongs to subgroup 1, we have identified the motifs responsible for the localization of the protein and protein-protein interactions. We demonstrate that the pattern 2 is responsible for the interaction with CSN5, a subunit of the signalosome complex, and that the motif 5 is redundant with motif 3 with respect to the sub-cellular localization of the protein. We also show that SlKRP1 is capable of guiding SlCDKA1 and SlCycD3; 1 to the nucleus, even in the absence of CDK / cyclin binding motif previously referenced. This new site of interaction is probably located in the central part of the sequence of SlKRP1. These results provide new clues about the role of the little-known part of this protein. Overexpression of SlKRP1 in tomato mesocarp disrupts the proportionality between endoreduplication and cell size The fruit is a specialized organ which results from the ovary after pollination and fertilization, and provides a suitable environment for seed maturation and dispersal. Because of their importance in human nutrition and economic importance, fleshy fruit species have been the subject of study mainly focused on the developmental formation of the ovary, fruit set and fruit ripening. The stage of fruit growth has been much less studied, although cell division and cell growth taking place during this period are crucial to determining the final size of the fruit, as well as its mass and shape. The development of tomato fruit mesocarp occurs by the estate of a phase of cell division followed by a phase of cell expansion associated with endoreduplication, leading to the formation of giant cells (up to 0.5 mm) with ploidy levels of up to 256C. Although a clear relationship between endoreduplication and cell growth has been shown by many examples in plants, the exact role of endoreduplication has still not been elucidated, since most of the experiments leading to a change in the level of endoreduplication in plants also affected cell division. We studied the kinetics of the development of tomato mesocarp morphologically and cytologically and studied the effect of the reduced level of endoreduplication in the development of the fruit over-expressing the cell cycle inhibitor Kip-Related Protein 1 (SlKRP1) specifically in the growing cells of the tomato mesocarp. We show a direct proportionality between endoreduplication and cell size during normal development of the fruit, which allowed us to build a model for development of mesocarp defining the thickness of the pericarp by taking into account the number of cell divisions and the number of rounds of endoreduplication. Surprisingly, the tomato mesocarps affected in their level of endoreduplication by over-expression of SlKRP1 are not affected in terms of cell size and fruit, or on their metabolic content. Our results demonstrate for the first time that while the level of ploidy is closely linked with cell size and fruit, endoreduplication is not responsible for the cell growth of tomato mesocarp.
6

Etude du rôle des inhibiteurs de kinases-cycline-dépendantes (CKI) de la classe des SIM/SMR en réponse au stress abiotique chez Arabidopsis thaliana

Lamy, Geneviève 29 May 2013 (has links) (PDF)
Chez Arabidopsis thaliana, les protéines SIAMESE-RELATED (SIM/SMR1 à 13) forment une famille plante-spécifique d'Inhibiteurs de Kinase Cycline-dépendante (CKI), homologue des Kip-Related Proteins. SIM et SMR1 sont des régulateurs positifs de la transition du cycle mitotique vers l'endoréplication. L'expression des gènes SIM/SMR est induite en réponse àdes stress. L'un des stress abiotiques majeurs pour les plantes est la sécheresse. Les SIM/SMR pourraient être dégradées par la voie de la protéolyse spécifique de l'Ubiquitin Proteasome System (UPS). Les SIM/SMR sont de bons candidats pour relier l'activité du cycle cellulaire aux stimuli de l'environnement. Ce travail a démontré l'implication de la protéolyse UPS dans le contrôle posttraductionnel de tous membres SIM/SMR testés. Il démontre que SIM, SMR2 et SMR1 sont nécessaires à l'endoréplication des cellules foliaires. Lors d'un stress hydrique, l'expression des gènes SIM, SMR1, SMR3 et SMR5 est induite. Le profil spatio-temporel de ces inductions a mis en évidence deux groupes de gènes avec des fonctions distinctes. Les mutants sim, smr5 et sim.smr1.smr2 sont hypersensibles au stress hydrique.
7

Dissecting the factors controlling seed development in the model legume Medicago truncatula / Dissection des facteurs contrôlant le développement de la graine chez la légumineuse modèle Medicago truncatula

Atif, Rana Muhammad 17 December 2012 (has links)
Les légumineuses sont une source riche pour l’alimentation humaine comme celle du bétail mais elles sont aussi nécessaires à une agriculture durable. Cependant, les fractions majeures des protéines de réserve dans la graine sont pauvres en acides aminés soufrés et peuvent être accompagné de facteurs antinutritionnels, ce qui affecte leur valeur nutritive. Dans ce cadre, Medicago truncatula est une espèce modèle pour l’étude du développement de la graine des légumineuses, et en particulier concernant la phase d’accumulation des protéines de réserve. Vu la complexité des graines de légumineuses, une connaissance approfondie de leur morphogenèse ainsi que la caractérisation des mécanismes sous-jacents au développement de l’embryon et au remplissage de la graine sont essentielles. Une étude de mutagenèse a permis d’identifier le facteur de transcription DOF1147 (DNA-binding with One Finger) appartenant à la famille Zn-finger, qui s’exprime dans l’albumen pendant la transition entre les phases d’embryogenèse et de remplissage de la graine. Lors de mon travail de thèse, il a été possible de générer plusieurs constructions pour l’analyse de l’expression de DOF1147 ainsi que de la protéine DOF1147. Un protocole efficace pour la transformation génétique stable de M. truncatula a été établi et des études de localisation subcellulaire ont montré que DOF1147 est une protéine nucléaire. Un arbre phylogénétique a révélé différents groupes de facteurs de transcription DOF avec des domaines conservés dans leur séquence protéique. L’analyse du promoteur in silico chez plusieurs gènes-cible potentiels de DOF1147 a identifié les éléments cis-régulateurs de divers facteurs de transcription ainsi que des éléments répondant aux auxines (AuxREs), ce qui suggère un rôle possible de l’auxine pendant le développement de la graine. Une étude in vitro du développement de la graine avec divers régimes hormonaux, a montré l’effet positif de l’auxine sur la cinétique du développement de la graine, que ce soit en terme de gain de masse ou de taille, plus fort avec l’ANA que l’AIB. Grâce à une approche cytomique de ces graines en développement nous avons, en plus, démontré l’effet de l’auxine sur la mise en place de l’endoreduplication. En effet, celle-ci est l’empreinte cytogénétique de la transition entre les phases de division cellulaire et d’accumulation de substances de réserve lors du développement de la graine. Dans son ensemble, ce travail a démontré que l’auxine module la transition entre le cycle mitotique et les endocycles chez les graines en développement de M. truncatula en favorisant la continuité des divisions cellulaires tout en prolongeant simultanément l’endoreduplication. / Legumes are not only indispensible for sustainable agriculture but are also a rich source of protein in food and feed for humans and animals, respectively. However, major proteins stored in legume seeds are poor in sulfur-containing amino acids, and may be accompanied by anti-nutritional factors causing low protein digestibility problems. In this regard, Medicago truncatula serves as a model legume to study legume seed development especially the phase of seed storage protein accumulation. As developing legume seeds are complex structures, a thorough knowledge of the morphogenesis of the seed and the characterization of regulatory mechanisms underlying the embryo development and seed filling of legumes is essential. Mutant studies have identified a DOF1147 (DNA-binding with One Finger) transcription factor belonging to the Zn-Finger family which was expressed in the endosperm at the transition period between embryogenesis and seed filling phase. During my PhD work, a number of transgene constructs were successfully generated for expression analysis of DOF1147 gene as well as the DOF1147 protein. A successful transformation protocol was also established for stable genetic transformation of M. truncatula. Subcellular localization studies have demonstrated that DOF1147 is a nuclear protein. A phylogenetic tree revealed different groups of DOF transcription factors with conserved domains in their protein sequence. In silico promoter analysis of putative target genes of DOF1147 identified cis-regulatory elements of various transcription factors along with auxin responsive elements (AuxREs) suggesting a possible role of auxin during seed development. A study of in vitro seed development under different hormone regimes has demonstrated the positive effect of auxin on kinetics of seed development in terms of gain in seed fresh weight and size, with NAA having a stronger effect than IBA. Using the cytomic approach, we further demonstrated the effect of auxin on the onset of endoreduplication in such seeds, which is the cytogenetic imprint of the transition between the cell division phase and the accumulation of storage products phase during seed development. As a whole, this work highlighted that the auxin treatments modulate the transition between mitotic cycles and endocycles in M. truncatula developing seeds by favouring sustained cell divisions while simultaneously prolonging endoreduplication.

Page generated in 0.1179 seconds