571 |
An experimental investigation of clocking effects on turbine aerodynamics using a modern 3-D one and one-half stage high pressure turbine for code verification and flow model developmentHaldeman, Charles W. 24 November 2003 (has links)
No description available.
|
572 |
Characteristic behavior of a side branch in a dendritic crystal growthPark, Jungwan 14 September 2007 (has links)
No description available.
|
573 |
Aerodynamic Optimization of a 2D Airfoil for Rotary-Wing Aircraft at Mars Atmospheric ConditionsSaez, Aleandro G. 12 1900 (has links)
The interest toward Mars exploration has been considerably increasing due to also the successful deployment of the Perseverance rover and the continuous tests developed by SpaceX's launch vehicle, Starship. While the Mars 2020 mission is currently in progress, the first controlled flight on another planet have been proven in April 2021 with the vertical take-off and landing of the Ingenuity rotorcraft on Mars. In addition, the rotorcraft Dragonfly is expected to achieve the same endeavor in Titan, the largest moon of Saturn, by 2036. Continuous efforts have been oriented toward the development of new technologies and aircraft configurations to improve the performance of current proposed designs to achieve powered flight in different planetary bodies. This thesis work is a preliminary study to develop a comprehensive analysis over the generation of optimum airfoil geometries to achieve vertical flight in environments where low Reynolds numbers and Mach number equal to 0.2 and 0.5.
|
574 |
Flow/acoustics mechanisms in two- and three-dimensional wake vorticesLi, Wenhua January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Zhongquan Zheng / In this study, a vortex particle method is used to simulate incompressible vortical flows, specifically aircraft wake vortices. This is particularly suitable for a wake vortex system that is slowly varying in the axial direction and has a high Reynolds number and low Mach number. The flow field, in the form of vorticity, is employed as the source in the far-field acoustic calculation using a vortex sound formula that enables computation of acoustic signals radiated from an approximated incompressible flow field.
In a two-dimensional vortex system, the stretching effect in the axial direction is neglected. The purpose of this study is to focus on vortex core behaviors. A numerical simulation is performed in a more realistic wake consisting of a counter-rotating vortex pair with inviscid ground effects and shear flows. A Kirchhoff spinning-core vortex model is thus used as a starting point.
In a vortex system with multiple vortices, such as a complicated aircraft vortex wake vortices, the sound emission frequency of the unsteady vortex core is subjected to change because of interactions between multiple vortices. The behaviors of the influence, indicated by the ratio between the core size and the distance of the vortices, are investigated as well as the underlining vortex core dynamic mechanisms. Cases of co-rotating vortices and a multiple-vortex system composed of two counter-rotating vortex pairs are studied for applications to aircraft wake vortex sound.
In three-dimensional vortices, sinusoidal instabilities, which occur in the axial direction at various length scales, result in significant flow structure changes in these vortices, and thus influence their radiated acoustic signals. Cases of vortex rings and a pair of counter-rotating vortices are studied when they are undergoing both long-wave and short-wave instabilities. Both inviscid and viscous interactions are considered and the effects of turbulence are simulated using sub-grid-scale models. A higher peak frequency than the Kirchhoff frequency appears due to the straining field caused by mutual perturbation, under both long-wave and short-wave instabilities. Vortices with the initial core vorticity of the Gaussian distribution and the elliptic distribution are also studied.
|
575 |
Low Velocity Impact Analysis of Composite Laminated PlatesZheng, Daihua January 2007 (has links)
No description available.
|
576 |
A theoretical and numerical study of the use of grid embedded axial magnetic fields to reduce charge exchange ion induced grid erosion in electrostatic ion thrustersClaypool, Ian Randolph 08 March 2007 (has links)
No description available.
|
577 |
Multi-Fidelity Study of Aerodynamics and Aeroacoustics Characteristics of a Quadrotor Biplane TailsitterHeydari, Morteza 05 1900 (has links)
Recent advances in manufacturing and growing concerns on the sustainability of aviation environment have led to a remarkable interest in electrical unmanned aerial systems (UASs) in the past decade. Among various UAS types, the newly designed quadrotor biplane tailsitter class is capable of delivering a wide range of civilian and military tasks, relying on its Vertical Take-Off and Landing (VTOL) capability as well as great maneuverability. Nevertheless, as such UASs employ rotors to generate thrust, and wings to generate lift, and operate at less-understood low to mid-Reynolds flow regime, they experience complicated flight aerodynamics with a noise generation mechanism which is different from common aircrafts. The present work aims at addressing this knowledge gap by studying the aerodynamics and aeroacoustics of a UAS of this type designed by the Army Research Lab. High-fidelity computational fluid dynamics (CFD) simulations are carried out for a wide range of operating conditions to understand the physics involved in the UAS aerodynamics and characterize its performance. Relying on the CFD results, a physics-informed reduced order model (ROM) is developed based on machine learning algorithms, to predict the propellers effects on the wings and calculate the dominant loads. The results of this study indicate that the UAS aerodynamics is significantly influenced by the propeller-wing interaction, which makes it challenging to estimate the loads by classic methods. The proposed physics-informed ROM shows a promising performance based on its computational cost and accuracy. Additionally, it is found that the aeroacoustics of the UAS is ruled by a two-way mechanism through which the propellers and the structure impose unsteadiness on each other.
|
578 |
Rotary ultrasonic machining of hard-to-machine materialsChuri, Nikhil January 1900 (has links)
Doctor of Philosophy / Department of Industrial & Manufacturing Systems Engineering / Zhijian Pei / Titanium alloy is one of the most important materials used in major segments of industries such as aerospace, automobile, sporting goods, medical and chemical. Market survey has stated that the titanium shipment in the USA has increased significantly in last two decades, indicating its increased usage. Industries are always under tremendous pressure to meet the ever-increasing demand to lower cost and improve quality of the products manufactured from titanium alloy. Similar to titanium alloys, silicon carbide and dental ceramics are two important materials used in many applications.
Rotary ultrasonic machining (RUM) is a non-traditional machining process that combines the material removal mechanisms of diamond grinding and ultrasonic machining. It comprises of a tool mounted on a rotary spindle attached to a piezo-electric transducer to produce the rotary and ultrasonic motion. No study has been reported on RUM of titanium alloy, silicon carbide and dental ceramics.
The goal of this research was to provide new knowledge of machining these hard-to-machine materials with RUM for further improvements in the machining cost and surface quality. A thorough research has been conducted based on the feasibility study, effects of tool variables, effects of machining variables and wheel wear mechanisms while RUM of titanium alloy. The effects of machining variables (such as spindle speed, feed rate, ultrasonic vibration power) and tool variables (grit size, diamond grain concentration, bond type) have been studied on the output variables (such as cutting force, material removal rate, surface roughness, chipping size) and the wheel wear mechanisms for titanium alloy. Feasibility of machining silicon carbide and dental ceramics is also conducted along with a designed experimental study.
|
579 |
Nonlinear Aeroelastic Analysis of Flexible High Aspect Ratio Wings Including Correlation with ExperimentJaworski, Justin January 2009 (has links)
<p>A series of aeroelastic analyses is performed for a flexible high-aspect-ratio wing representative of a high altitude long endurance (HALE) aircraft. Such aircraft are susceptible to dynamic instabilities such as flutter, which can lead to large amplitude limit cycle oscillations. These structural motions are modeled by a representative linear typical section model and by Hodges-Dowell beam theory, which includes leading-order nonlinear elastic coupling. Aerodynamic forces are represented by the ONERA dynamic stall model with its coefficients calibrated to CFD data versus wind tunnel test data. Time marching computations of the coupled nonlinear beam and ONERA system highlight a number of features relevant to the aeroelastic response of HALE aircraft, including the influence of a tip store, the sensitivity of the flutter boundary and limit cycle oscillations to aerodynamic CFD or test data, and the roles of structural nonlinearity and nonlinear aerodynamic stall in the dynamic stability of high-aspect-ratio wings.</p> / Dissertation
|
580 |
Development of a modular MDO framework for preliminary wing designPaiva, Ricardo Miguel 14 December 2007 (has links)
Multidisciplinary Design Optimization (MDO) is an area in engineering design which has been growing rapidly in terms of applications in the last few decades, aircraft design being no exception to that. The application of MDO to aircraft and more
specifically, wing design, presents many challenges, since disciplines like aerodynamics and structures have to be combined and interact. The level to which this interaction is implemented depends only on how much one is willing to pay in terms of
computational cost.
The objective of the current work is therefore to develop a simplified MDO tool,
suitable for the preliminary design of aircraft wings. At the same time, versatility
in the definition of optimization problems (in terms of design variables, constraints
and objective function) is given great attention. At the same time, modularity will
ensure that this framework is upgradeable with higher-fidelity and/or more capable
modules.
The disciplines that were chosen for interaction were aerodynamics and structures/
aeroelasticity, though more data can be extracted from their results in order to
perform other types of analyses. The aerodynamics module employs a Vortex Lattice
code developed specifically for the current implementation of the tool. The structural
module is based on Equivalent Plate model theory. The fluid structure interaction
is simply one-way, wherein the aerodynamics loads are passed on to the structural
analyzer for computation of the static deformation. Semi-empirical relations are then used to estimate the flutter speed. The optimizer, which controls the activity of
the other modules, makes use of a gradient based algorithm (Sequential Quadratic
Programming) to search for a local minimum of a user defined objective function.
Among the myriad of MDO strategies available, two are chosen to exemplify the
modularity of the tool developed: Multidiscipline Feasible (MDF) and Sequential
Optimization (SO), and their results are compared. Several case studies are analyzed
to cover a broad spectrum of the capabilities of the framework.
Because user interaction is of prime concern in design optimization, a graphical interface (GUI) of the tool is presented. Its advantages in terms of the set up of
optimization problems and post-processing of results are made clear.
In conclusion, some topics for future work regarding the expansion and improvement
of the features of the application are noted.
|
Page generated in 0.1401 seconds