• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 14
  • 14
  • 9
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effects of Aqueous Organic Coatings on the Interfacial Transport of Atmospheric Species

Reeser, Dorea Irma 14 January 2014 (has links)
Species must interact with air—aqueous interfaces in order to transport between either phase, however organic coated water surfaces are ubiquitous in the environment, and the physical and chemical processes that occur at organic coated aqueous surfaces are often different than those at pure air—water interfaces. Three studies were performed investigating the transport of species across air—aqueous interfaces with organic coatings in an effort to gain further insight into these processes. Gas and solution phase absorption spectroscopy were used to study the effect of octanol coatings on the formation of molecular iodine (I2) by the heterogeneous ozonation of iodide and its partitioning between phases. Compared to uncoated solutions, the presence of octanol monolayers had a minor effect on the total amount of I2 produced, however, it did significantly enhance the gas to solution partitioning of I2. Incoherent broadband cavity-enhanced absorption spectroscopy (IBBC-EAS) was used to measure the gas-phase nitrogen dioxide (NO2) evolved via photolysis of aqueous nitrate solutions either uncoated or containing octanol, octanoic acid and stearic acid monolayers. Both octanol and stearic acid reduced the rate of gaseous NO2 evolution, and octanol also decreased the steady-state amount of gaseous NO2. Alternatively, octanoic acid enhanced the rate of gaseous NO2 evolution. Finally, the loss of aqueous carbon dioxide (CO2) from aqueous solutions saturated with CO2 was measured using a CO2 electrode in the absence and presence of stearic acid monolayers and octanol coatings, and a greenhouse gas analyzer was used to measure the evolution of gaseous CO2 from solutios with octanol monolayers. Enhanced losses of aqueous and evolved gaseous CO2 were observed with organic coated solutions compared to those uncoated. The results of these studies suggest that organic coatings influence the transport of I2, NO2 and CO2 via one, or a combination of: barrier effects, surface tension effects, chemistry effects and aqueous – surface – gas partitioning effects. These results, particularly the enhanced partitioning of these species to octanol coated aqueous surfaces, have important implications for species transport at air—aqueous interfaces, and may provide useful insight for future studies and parameters for atmospheric models of these species.
12

Organic solar cells : novel materials, charge transport and plasmonic studies

Ebenhoch, Bernd January 2015 (has links)
Organic solar cells have great potential for cost-effective and large area electricity production, but their applicability is limited by the relatively low efficiency. In this dissertation I report investigations of novel materials and the underlying principles of organic solar cells, carried out at the University of St Andrews between 2011 and 2015. Key results of this investigation: • The charge carrier mobility of organic semiconductors in the active layer of polymer solar cells has a rather small influence on the power conversion efficiency. Cooling solar cells of the polymer:fullerene blend PTB7:PC₇₁BM from room temperature to 77 K decreased the hole mobility by a factor of thousand but the device efficiency only halved. • Subphthalocyanine molecules, which are commonly used as electron donor materials in vacuum-deposited active layers of organic solar cells, can, by a slight structural modification, also be used as efficient electron acceptor materials in solution-deposited active layers. Additionally these acceptors offer, compared to standard fullerene acceptors,advantages of a stronger light absorption at the peak of the solar spectrum. • A low band-gap polymer donor material requires a careful selection of the acceptor material in order to achieve efficient charge separation and a maximum open circuit voltage. • Metal structures in nanometer-size can efficiently enhance the electric field and light absorption in organic semiconductors by plasmonic resonance. The fluorescence of a P3HT polymer film above silver nanowires, separated by PEDOT:PSS, increased by factor of two. This could be clearly assigned to an enhanced absorption as the radiative transition of P3HT was identical beside the nanowires. • The use of a processing additive in the casting solution for the active layer of organic solar cells of PTB7:PC₇₁BM strongly influences the morphology, which leads not only to an optimum of charge separation but also to optimal charge collection.
13

Identification of Sources of Air Pollution Using Novel Analytical Techniques and Instruments

Bhardwaj, Nitish 31 March 2022 (has links)
This dissertation is a collection of studies that investigates the issue of air pollution in the field of environmental chemistry. My thesis consists of research works done to measure the concentration of particulate matter (PM) and gas-phase species in ambient air. High concentrations of PM is a significant problem in Utah and in other regions of the world. Particles having an aerodynamic diameter of 2.5 micrometers and smaller play a crucial role in air pollution and pose serious health risks when inhaled. PM is composed of both organic and inorganic components. The organic fraction in PM ranges from 10-90% of the total particle mass. Several methods have been employed to measure the organic fraction of PM, but these techniques require extensive laboratory analysis, expensive bench top equipment, and do a poor job of capturing diurnal variations of the concentrations of ambient organic compounds. The Hansen Lab has developed a new instrument called the Organic Aerosol Monitor (OAM) which is based on gas chromatography followed by mass spectrometry detection platform for measuring the carbonaceous component of PM2.5 on an hourly averaged basis. Organic marker data collected in 2016 using the OAM was used in a Positive Matrix Factorization (PMF) analysis to identify the sources of PM in West Valley City, Utah. Additionally, data was collected in Richfield and Vernal, UT in 2017 - 2018 to quantitatively monitor the composition of organic markers of PM2.5. Some previously unidentified organic compounds in PM were successfully identified during this study, including terpenes, polycyclic aromatic hydrocarbons (PAHs), diethyl phthalate, some herbicides, and pesticides. Gas-phase species play a significant role in driving the formation of air pollutants in Earth's atmosphere. Traditional gas detection methods do not provide high temporally and spatially resolved data; therefore, it becomes important to detect and measure gas-phase species both qualitatively and quantitatively to better understand the sources of air pollution. An incoherent broadband cavity enhanced absorption spectrometer (IBBCEAS) combines a broadband incoherent light source, a stable optical cavity formed by two highly reflective mirrors and a charged-coupled device (CCD) detector to quantitatively measure the gas-phase compounds present in the atmosphere. The concentrations of formaldehyde (HCHO) were measured using IBBCEAS to investigate the sources of this hydrocarbon in Bountiful, Utah during 2019. Another important species is OH radical. It is one of the most predominant oxidizing species present in the atmosphere. It is found in low concentrations, 0.1 ppt. Detecting concentrations this low is challenging. A new IBBCEAS instrument has been designed and elements of this instrument were tested by measuring the OH overtones in a variety of short chained alcohols. A set of experiments were conducted to measure the absorption cross-sections for the 5th and 6th OH vibrational overtones in a series of short chained alcohols by IBBCEAS. Because OH radical's lowest energy electronic state occurs in the same wavelength region (i.e., 308 nm) that SO2 absorbs (300-310 nm), a study was conducted in which the concentrations of SO2 were measured using an IBBCEAS and compared with a commercially available SO2 monitor.
14

Fibre-Loop Ring-Down Spectroscopy Using Liquid Core Waveguides

Bescherer-Nachtmann, Klaus 23 April 2013 (has links)
Cavity ring-down spectroscopy has been used over the last twenty years as a highly sensitive absorption spectroscopic technique to measure light attenuation in gases, liquids, and solid samples. An optical cavity is used as a multi-pass cell, and the decay time of the light intensity in the cavity is measured, thereby rendering the techniques insensitive to light intensity fluctuations. Optical waveguides are used to build the optical cavities presented in this work. The geometries of such waveguides permit the use of very small liquid sample volumes while retaining the advantages of cavity ring-down spectroscopy. In this thesis cavity ring-down measurements are conducted, both, in the time domain and by measuring phase-shifts of sinusoidally modulated light, and the two methods are theoretically connected using a simple mathematical model, which is then experimentally confirmed. A new laser driver, that is compatible with high powered diode lasers, has to be designed to be able to switch from time domain to frequency domain measurements. A sample path length enhancement within the optical cavity is explored with the use of liquid core waveguides. The setup was optimised with respect to the matrix liquid, the geometrical matching of waveguide geometries, and the shape of liquid core waveguide ends. Additionally, a new technique of producing concave lenses at fibre ends has been developed and the output of a general fibre lens is simulated. Finally, liquid core waveguides are incorporated into a fibre-loop ring-down spectroscopy setup to measure the attenuation of two model dyes in a sample volume of <1 µL. The setup is characterized by measuring concentrations of Allura Red AC and Congo Red from 1 µM to a limit of detection of 5 nM. The performance of the setup is compared to other absorption techniques measuring liquid samples. / Thesis (Ph.D, Chemistry) -- Queen's University, 2013-04-23 14:08:16.33

Page generated in 0.1225 seconds