• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Graphène dans des liquides ioniques : interactions aux interfaces, exfoliation, stabilisation / Graphene in ionic liquids : interactions at interfaces, exfoliation, stabilization

Bordes, Emilie 11 December 2017 (has links)
L'exfoliation en phase liquide du graphite est l'une des méthodes les plus prometteuses pour augmenter la production et la disponibilité commerciale du graphène. Le processus d'exfoliation peut être décrit, de manière conceptuelle, en quatre étapes: le contact du graphite avec le liquide, l'intercalation du solvant entre les feuillets de graphène, la dispersion du matériau à deux dimension et sa stabilisation en phase liquide. Comme les liquides ioniques peuvent être facilement obtenus avec différentes structures moléculaires et donc des propriétés physicochimiques modulables, ils ont été utilisés dans cette thèse comme milieux liquides pour l'exfoliation du graphite. Notre objectif est d'optimiser l'exfoliation du graphite à travers la compréhension des mécanismes moléculaires et des interactions impliquées dans chaque étape du processus. Les énergies interfaciale graphite-liquide ont été calculées à partir de tensions de surface et d'angles de contact mesurées entre des liquides ioniques et du graphite pour déterminer l'affinité de différents liquides à la surface du graphite. Afin d'étudier cette interface liquide - solide, des simulations en dynamique moléculaire ont été menées pour analyser l'organisation des liquides ioniques à la surface du graphite. De même, l'énergie libre nécessaire pour créer des cavités au sein du liquide ionique a été calculée.Des simulations moléculaires ont également été réalisées pour modéliser l'exfoliation d'un feuillet de graphène à partir de graphite en apportant une vue microscopique de l'intercalation des molécules de solvant. L'énergie nécessaire à l'exfoliation a pu être calculée en présence de différents liquides. Des composés polyaromatiques ont été considérés comme des modèles pour le graphène car ils peuvent être facilement obtenus purs, sans variabilité de structure, défauts ou groupes fonctionnels non contrôlés. Les enthalpies de dissolution du naphtalène, anthracène et pyrène dans différents liquides ioniques ont été mesurées par calorimétrie en solution et liées à leur solubilité. L'organisation des ions autour de ces composés modèles a été étudiée par simulation moléculaire et spectroscopie Infra-Rouge.Après l'exfoliation, les échantillons de graphène en suspension dans différents liquides ioniques ont été caractérisés expérimentalement en termes de taille de feuillets (microscopie électronique à transmission et microscopie à force atomique), nombre de couches de graphène (microscopie à force atomique, spectroscopie Raman), concentration totale (spectroscopie UV-visible) et pureté du matériau exfolié (spectroscopie de photoélectrons~X). Vingt liquides ioniques différents à base de cations imidazolium, pyrrolidinium et ammonium et d'anions bis (trifluorométhylsulfonyl)imide, triflate, dicyanamide, tricyanométhanide et méthylsulfate ont été testés. Les interactions moléculaires permettant d'établir de règles de conception pour les liquides ioniques capables d'exfolier les matériaux carbonés ont été identifiées. Le cation pyrrolidinium a montré des résultats prometteurs dans toutes les étapes du processus d'exfoliation, par rapport au cation imidazolium ou ammonium. La sélection d'un grand anion flexible a réduit l'énergie interfaciale avec le graphite, dispersé les nanocarbones en augmentant l'entropie du système et stabilisé le graphite exfolié en plus grande quantité. Un petit anion tel que le triflate semble être favorable à l'obtention de graphène, même si la taille des couches et leur quantité sont réduites. Un liquide ionique ayant une partie apolaire importante facilitera l'insertion et la dispersion du nanomatériau de carbone. Pour la stabilisation du graphite, les interactions alkyle-π et π- π sont décisives. / The liquid-phase exfoliation of graphite is one of the most promising methods to increase production and commercial availability of graphene. The exfoliation process can be conceptually described in four steps: the contact of the graphite with liquid, the intercalation of the solvent between layers, the dispersion of the two dimensional material, and its stabilization in the liquid-phase. Because ionic liquids can be easily obtained with chosen molecular structures and tunable physicochemical properties, they were used in this study as liquid media for the exfoliation of graphite. Our aim is to optimize the exfoliation of graphite through the understanding of the molecular mechanisms and of the interactions involved in each step of the process.The liquid-graphite interfacial energies from measured surface tensions and contact angles, between ionic liquids and pristine graphite surface, were used to determine the affinity of different liquids at the surface of graphite. In order to investigate this interface, molecular dynamics simulations were conducted to analyse the ordering of ionic liquids at the surface of graphite. The free energies necessary to create cavities inside the bulk ionic liquid have also been studied.Molecular simulations were also used to study the exfoliation of one graphene layer from a stack of graphite and hence provide a microscopic view of the intercalation of solvent molecules. The energies involved in the process have been calculated.Polyaromatic compounds were regarded as models for graphene as they can be easily obtained pure, without structure variability, defects or uncontrolled functional groups. Enthalpies of dissolution of polyaromatic hydrocarbons (naphthalene, anthracene and pyrene) in different ionic liquids were measured by solution calorimetry and related with their solubility. The ordering of the ions around this model compounds were studied by molecular simulation and spectroscopy Infra-Red.After exfoliation, samples of suspended graphene in different ionic liquids have been characterized experimentally in terms of flake size (using transmission electron microscopy and atomic force microscopy), number of layers (atomic force microscopy, spectroscopy Raman), total concentration (UV-visible spectroscopy) and purity of the exfoliated material (X-ray photoelectron spectrometry).Twenty different ionic liquids based on imidazolium, pyrrolidinium and ammonium cations and on bis(trifluoromethylsulfonyl)imide, triflate, dicyanamide, tricyanomethanide, and methyl sulfate have been tested. The molecular interactions have been identified thus allowing the establishment of design rules for ionic liquids capable of exfoliating carbon materials. The pyrrolidinium cation has shown promising results in all the steps of exfoliation process, compared to the imidazolium or ammonium cation. Selecting a large and flexible anion reduced the interfacial energy with graphite, dispersed the nanocarbons by increasing the entropy of the system and stabilized the exfoliated graphite in larger quantity. A small anion such as triflate appears to be favorable for obtaining graphene, whereas the size of the layers and their quantity is reduced. An ionic liquid having an important apolar portion will facilitate the insertion and dispersion of graphene layers. For the stabilization of graphite, the alkyl-π et π -π interactions are decisive.
2

Etude thermodynamique de la dissolution du dioxyde de carbone dans des solutions aqueuses d'alcanolamines

Arcis, Hugues 15 December 2008 (has links) (PDF)
Cette thèse porte sur l'étude de l'enthalpie de dissolution du dioxyde de carbone dans des solutions aqueuses d'amine. Pour développer des modèles théoriques décrivant les systèmes (CO2-amine-eau) pour les conditions appliquées aux procédés industriels, il est nécessaire d'avoir des données expérimentales reliant la solubilité et l'enthalpie. Dans cette étude, nous avons utilisé une unité de mélange construite au laboratoire que nous avons adapté à un calorimètre SETARAM C-80 pour mesurer l'enthalpie de solution du CO2 dans cinq solutions aqueuses d'amine, (la 2-Amino-2-méthyl-1-propanol (AMP), la monoéthanolamine (MEA), la diéthanolamine (DEA), la triéthanolamine (TEA) et la méthyldiéthanolamine (MDEA) (15 et 30 mass%) à des températures comprises entre 322.5 K et 372.9 K et des pressions allant de 0.5 à 5 MPa. Les données de la littérature ont été utilisées pour ajuster deux modèles thermodynamiques d'équilibre de phases (un simple et un rigoureux). Le premier modèle résume l'absorption du CO2 par une seule réaction, tandis que le second prend en compte toutes les réactions à l'équilibre. Le modèle simple reproduit nos enthalpies expérimentales à plus ou moins 10%, tandis que le modèle rigoureux reproduit nos données avec un écart compris entre 5 et 20% selon l'amine considérée. Le calcul de l'enthalpie dans le modèle rigoureux est fortement dépendant des données de la littérature utilisées pour la réaction de protonation de l'amine. Ceci souligne la nécessité d'acquérir de nouvelles données expérimentales sur ces constantes d'équilibre pour améliorer le modèle.

Page generated in 0.1183 seconds