11 |
A Table of Complex Integrals Evaluated About Closed Contours Containing Singular PointsGraham, Vernon G. January 1949 (has links)
No description available.
|
12 |
Entire functions and uniform distribution /Wodzak, Michael A. January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 87-88). Also available on the Internet.
|
13 |
Entire functions and uniform distributionWodzak, Michael A. January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 87-88). Also available on the Internet.
|
14 |
Polinômios e funções inteiras com zeros reais / Polynomials and entire functions with real zerosLucas, Fábio Rodrigues 16 August 2018 (has links)
Orientador: Dimitar Kolev Dimitrov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-16T01:35:19Z (GMT). No. of bitstreams: 1
Lucas_FabioRodrigues_D.pdf: 837192 bytes, checksum: 1cec40a06f620203e95cbca6134fd41a (MD5)
Previous issue date: 2010 / Resumo: Nesta tese abordamos alguns problemas relacionados com zeros de polinômios e de funções inteiras. Estabelecemos fórmulas explícitas para os polinômios da sequência de Sturm, gerada por um polinômio e pela sua derivada. Como consequência, obtemos condições necessárias e suficientes para que um polinômio sem zeros múltiplos tenha somente zeros reais. Provamos também a veracidade de algumas condições necessárias para a hipótese de Riemann, estendendo desta forma um resultado anterior de Csordas, Norfolk e Varga que estabelecem uma conjectura de Pólya / Abstract: In this thesis we approach problems concerning zeros of polynomials and entire functions. We establish explicit formula for the polynomial in the Sturm sequence, generated by a polynomial and its derivative. As a consequence, we obtain necessary and sufficient conditions for a polynomial without multiple zeros to possess only real zeros. We prove also the truth of certain necessary conditions for the Riemann Hypothesis, thus extending a previous result of Csordas, Norfolk and Varga who established a conjecture of Pôlya / Doutorado / Analise Aplicada / Doutor em Matemática Aplicada
|
15 |
Two problems in function theory of one complex variable: local properties of solutions of second-order differential equations and number of deficient functions of some entire functionsCheng, Jiuyi 07 June 2006 (has links)
This dissertation investigates two problems in the function theory of one complex variable. In Chapter 1, we study the asymptotics and zero distribution of solutions of the differential equation
w<sup>n</sup> + A(z)w = 0,
where A(z) is a transcendental entire function of very slow growth. The result parallels the classical case when A(z) is assumed to be a polynomial. An analogue concerning the case when A(z) is a transcendental entire function whose series expansion satisfies the Hadamard gap condition is given.
In Chapter 2, we give upper bounds for the number of deficient functions of entire functions of completely regular growth and entire functions whose zeros have angular densities. In particular, the bound is 2λ + 1 if the entire function is of completely regular growth with order λ, 0 < λ < ∞. / Ph. D.
|
16 |
Formules de quadrature pour les fonctions entières de type exponentielBahri, Nadia 08 1900 (has links)
Ce mémoire contient quelques résultats sur l'intégration numérique. Ils sont liés à la
célèbre formule de quadrature de K. F. Gauss. Une généralisation très intéressante de la formule de Gauss a été obtenue par P. Turán. Elle est contenue dans son article publié en 1948, seulement quelques années après la seconde guerre mondiale. Étant données les circonstances défavorables dans lesquelles il se trouvait à l'époque, l'auteur (Turán) a laissé beaucoup de détails à remplir par le lecteur. Par ailleurs, l'article de Turán a inspiré une multitude de recherches; sa formule a été étendue de di érentes manières et plusieurs articles ont été publiés sur ce sujet. Toutefois, il n'existe aucun livre ni article
qui contiennent un compte-rendu détaillé des résultats de base, relatifs à la formule
de Turán. Je voudrais donc que mon mémoire comporte su samment de détails qui puissent éclairer le lecteur tout en présentant un exposé de ce qui a été fait sur ce sujet.
Voici comment nous avons organisé le contenu de ce mémoire.
1-a. La formule de Gauss originale pour les polynômes - L'énoncé ainsi qu'une preuve.
1-b. Le point de vue de Turán - Compte-rendu détaillé des résultats de son article.
2-a. Une formule pour les polynômes trigonométriques analogue à celle de Gauss.
2-b. Une formule pour les polynômes trigonométriques analogue à celle de Turán.
3-a. Deux formules pour les fonctions entières de type exponentiel, analogues à celle de
Gauss pour les polynômes.
3-b. Une formule pour les fonctions entières de type exponentiel, analogue à celle de
Turán.
4-a. Annexe A - Notions de base sur les polynômes de Legendre.
4-b. Annexe B - Interpolation polynomiale.
4-c. Annexe C - Notions de base sur les fonctions entières de type exponentiel.
4-d. Annexe D - L'article de P. Turán. / This mémoire contains some results about numerical integration. They are related
to the famous quadrature formula of K. F. Gauss. A very interesting generalization of
the formula of Gauss was obtained by P.Turán. It is contained in a paper that was
published in 1948, only a few years after the second world war. Due to adverse circunstances he was in at the time, the author (Turán) left many details for the reader to fill in. Otherwise, the article of Turán inspired a multitude of research, and his formula has been extended in many ways and several papers have been written on this subject. However, there is no single book or paper where one can nd a clear and comprehensive account of the basic results pertaining to Turán's formula. Thus, I would like my Master's mémoire to contain enough details that can enlighten the reader and present an exposition of much that has been done on this subject. Here is how we have arranged the contents of the mémoire.
1-a. The original formula of Gauss for polynomials - statement along with a proof.
1-b. Turán's point of view - detailed account of the results contained in his paper.
2-a. A formula for trigonometric polynomials analogous to that of Gauss.
2-b. A formula for trigonometric polynomials analogous to that of Turán.
3-a. Two formulae for entire functions of exponential type, analogous to the one of
Gauss for polynomials.
3-b. A formula for entire functions of exponential type, analogous to that of Turán.
4-a. Annexe A - Basic facts about Legendre polynomials.
4-b. Annexe B - Polynomial interpolation.
4-c. Annexe C - Basic facts about entire functions of exponential type.
4-d. Annexe D - Paper of P. Turán.
|
17 |
Entire Solutions to Dirichlet Type ProblemsSitar, Scott January 2007 (has links)
In this thesis, we examined some Dirichlet type problems of
the form:
\begin{eqnarray*}
\triangle u & = & 0\ {\rm in\ } \mathbb{R}^n \\
u & = & f\ {\rm on\ } \psi = 0,
\end{eqnarray*}
and we were particularly interested in finding entire solutions
when entire data was prescribed. This is an extension of the work
of D. Siegel, M. Mouratidis, and M. Chamberland, who were interested
in finding polynomial solutions when polynomial data was prescribed.
In the cases where they found that polynomial solutions always existed
for any polynomial data, we tried to show that entire
solutions always existed given any entire data. For half space
problems we were successful, but when we compared this to the heat
equation, we found that we needed to impose restrictions on the type
of data allowed. For problems where data is prescribed on a pair of
intersecting lines in the plane, we found a surprising dependence
between the existence of an entire solution and the number
theoretic properties of the angle between the lines. We were
able to show that for numbers $\alpha$ with $\omega_1$ finite
according to Mahler's classification of transcendental numbers,
there will always be an entire solution given
entire data for the angle $2\alpha\pi$ between the lines.
We were also able to construct an uncountable, dense set of
angles of measure 0, much in the spirit of Liouville's number,
for which there will not always be an entire solution for all
entire data.
Finally, we investigated a problem where data is given
on the boundary of an infinite strip in the plane. We were unable to settle
this problem, but we were able to reduce it to other
{\it a priori} more tractable problems.
|
18 |
Entire Solutions to Dirichlet Type ProblemsSitar, Scott January 2007 (has links)
In this thesis, we examined some Dirichlet type problems of
the form:
\begin{eqnarray*}
\triangle u & = & 0\ {\rm in\ } \mathbb{R}^n \\
u & = & f\ {\rm on\ } \psi = 0,
\end{eqnarray*}
and we were particularly interested in finding entire solutions
when entire data was prescribed. This is an extension of the work
of D. Siegel, M. Mouratidis, and M. Chamberland, who were interested
in finding polynomial solutions when polynomial data was prescribed.
In the cases where they found that polynomial solutions always existed
for any polynomial data, we tried to show that entire
solutions always existed given any entire data. For half space
problems we were successful, but when we compared this to the heat
equation, we found that we needed to impose restrictions on the type
of data allowed. For problems where data is prescribed on a pair of
intersecting lines in the plane, we found a surprising dependence
between the existence of an entire solution and the number
theoretic properties of the angle between the lines. We were
able to show that for numbers $\alpha$ with $\omega_1$ finite
according to Mahler's classification of transcendental numbers,
there will always be an entire solution given
entire data for the angle $2\alpha\pi$ between the lines.
We were also able to construct an uncountable, dense set of
angles of measure 0, much in the spirit of Liouville's number,
for which there will not always be an entire solution for all
entire data.
Finally, we investigated a problem where data is given
on the boundary of an infinite strip in the plane. We were unable to settle
this problem, but we were able to reduce it to other
{\it a priori} more tractable problems.
|
19 |
Some inequalities in Fourier analysis and applicationsKelly, Michael Scott 23 June 2014 (has links)
We prove several inequalities involving the Fourier transform of functions which are compactly supported. The constraint that the functions have compact support is a simplifying feature which is desirable in applications, but there is a trade-off in control of other relevant quantities-- such as the mass of the function. With applications in mind, we prove inequalities which quantify these types of trade-offs. / text
|
20 |
Formules de quadrature pour les fonctions entières de type exponentielBahri, Nadia 08 1900 (has links)
Ce mémoire contient quelques résultats sur l'intégration numérique. Ils sont liés à la
célèbre formule de quadrature de K. F. Gauss. Une généralisation très intéressante de la formule de Gauss a été obtenue par P. Turán. Elle est contenue dans son article publié en 1948, seulement quelques années après la seconde guerre mondiale. Étant données les circonstances défavorables dans lesquelles il se trouvait à l'époque, l'auteur (Turán) a laissé beaucoup de détails à remplir par le lecteur. Par ailleurs, l'article de Turán a inspiré une multitude de recherches; sa formule a été étendue de di érentes manières et plusieurs articles ont été publiés sur ce sujet. Toutefois, il n'existe aucun livre ni article
qui contiennent un compte-rendu détaillé des résultats de base, relatifs à la formule
de Turán. Je voudrais donc que mon mémoire comporte su samment de détails qui puissent éclairer le lecteur tout en présentant un exposé de ce qui a été fait sur ce sujet.
Voici comment nous avons organisé le contenu de ce mémoire.
1-a. La formule de Gauss originale pour les polynômes - L'énoncé ainsi qu'une preuve.
1-b. Le point de vue de Turán - Compte-rendu détaillé des résultats de son article.
2-a. Une formule pour les polynômes trigonométriques analogue à celle de Gauss.
2-b. Une formule pour les polynômes trigonométriques analogue à celle de Turán.
3-a. Deux formules pour les fonctions entières de type exponentiel, analogues à celle de
Gauss pour les polynômes.
3-b. Une formule pour les fonctions entières de type exponentiel, analogue à celle de
Turán.
4-a. Annexe A - Notions de base sur les polynômes de Legendre.
4-b. Annexe B - Interpolation polynomiale.
4-c. Annexe C - Notions de base sur les fonctions entières de type exponentiel.
4-d. Annexe D - L'article de P. Turán. / This mémoire contains some results about numerical integration. They are related
to the famous quadrature formula of K. F. Gauss. A very interesting generalization of
the formula of Gauss was obtained by P.Turán. It is contained in a paper that was
published in 1948, only a few years after the second world war. Due to adverse circunstances he was in at the time, the author (Turán) left many details for the reader to fill in. Otherwise, the article of Turán inspired a multitude of research, and his formula has been extended in many ways and several papers have been written on this subject. However, there is no single book or paper where one can nd a clear and comprehensive account of the basic results pertaining to Turán's formula. Thus, I would like my Master's mémoire to contain enough details that can enlighten the reader and present an exposition of much that has been done on this subject. Here is how we have arranged the contents of the mémoire.
1-a. The original formula of Gauss for polynomials - statement along with a proof.
1-b. Turán's point of view - detailed account of the results contained in his paper.
2-a. A formula for trigonometric polynomials analogous to that of Gauss.
2-b. A formula for trigonometric polynomials analogous to that of Turán.
3-a. Two formulae for entire functions of exponential type, analogous to the one of
Gauss for polynomials.
3-b. A formula for entire functions of exponential type, analogous to that of Turán.
4-a. Annexe A - Basic facts about Legendre polynomials.
4-b. Annexe B - Polynomial interpolation.
4-c. Annexe C - Basic facts about entire functions of exponential type.
4-d. Annexe D - Paper of P. Turán.
|
Page generated in 0.0333 seconds