• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 63
  • 63
  • 22
  • 11
  • 11
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Modelagem e simulação do núcleo morto em partículas catalíticas contendo enzimas imobilizadas e suas consequências no projeto e operação de reatores enzimáticos / Modeling and simulation of the dead core in catalytic particles containing immobilized enzymes and their consequences on the design and operation of enzymatic reactors

Felix Monteiro Pereira 01 July 2008 (has links)
Neste trabalho, foram realizados estudos sobre a modelagem e simulação do núcleo morto em partículas catalíticas contendo enzimas imobilizadas. Tais estudos envolveram a resolução de problemas de valor de contorno gerados pela modelagem dos fenômenos de difusão-reação no interior da partícula. Os principais parâmetros que determinam a ocorrência do núcleo morto foram investigados e os perfis de concentração de substrato e produto, bem como a posição do núcleo morto para a cinética de Michaelis-Menten e outras, foram calculados para catalisadores com geometrias clássicas de placa plana infinita, cilindro infinito e esfera. Para este fim, os seguintes métodos numéricos foram utilizados: shooting, colocação ortogonal global e colocação ortogonal em elementos finitos. Entre os métodos avaliados, o método da colocação ortogonal em elementos finitos foi o único capaz de representar os perfis de concentração de substrato e de produto, e os valores do fator de efetividade obtidos com as soluções analíticas para cinéticas de ordem zero e de primeira ordem, as quais foram usadas como referência. Assim, este método foi empregado para resolver os problemas de valor de contorno envolvendo as cinéticas de Michaelis-Menten e aquelas com inibição competitiva, não competitiva e acompetitiva por produto, e com inibição acompetitiva por substrato, sendo os resultados obtidos consistentes para todas as cinéticas analisadas. A metodologia proposta foi então usada para estudos de projeto e operação de reatores enzimáticos contínuos de mistura perfeita e de fluxo pistonado, sendo que os resultados obtidos foram coerentes. Assim, a metodologia apresentada neste trabalho pode ser avaliada em condições reais de projeto e operação de reatores enzimáticos heterogêneos contínuos. / This work dealt with studies on the modeling and simulation of the dead core in porous catalytic particles containing immobilized enzymes. Such studies involved the solution of boundaryvalue problems generated by the modeling of the diffusion-reaction phenomena inside the particle. The main parameters that determine the occurrence of dead core were investigated and the concentration profiles of substrate and product, as well as the position of the dead core for Michaelis-Menten\'s and other kinetics in catalysts with classical geometries of infinite slab, infinite cylinder and sphere were calculated. For this purpose, the following numerical methods were used: shooting, global-orthogonal-collocation and orthogonal-collocation in finite elements. Among these methods, only the orthogonal-collocation in finite elements simulated all substrate and product-concentration profiles and the effectiveness-factor values obtained with the analytical solutions for zero and first-order kinetics, which were used as reference. Therefore, this method was employed to solve the problems including the Michaelis-Menten kinetics, the competitive-, non-competitive- and acompetitive-product-inhibition kinetics, and the acompetitive-substrate-inhibition kinetics. The results obtained for all kinetics analyzed were consistent. Thus, the proposed methodology was used for studies on the design and operation of both continuous-stirred-tank and plug-flow reactors, and the results obtained were coherent. Thus, the methodology presented in this work can be evaluated under real conditions of design and operation of continuous heterogeneous enzymatic reactors.
62

Otimização por planejamento experimental da imobilização de lipase em silica de porosidade controlada na presença de estabilizantes

Soares, Cleide Mara Faria 20 September 2000 (has links)
Orientadores: Maria Helena Andrade Santana, Heizir Ferreira de Castro / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-07-27T20:07:32Z (GMT). No. of bitstreams: 1 Soares_CleideMaraFaria_M.pdf: 5966176 bytes, checksum: 181a14205ef4b15d71734d115dd39efe (MD5) Previous issue date: 2000 / Resumo: A metodologia de preparação do biocatalisador pode influenciar no processo catalítico. De acordo com estudos anteriores a lipase de Candida rugosa pode ser imobilizada com presença de alta atividade em sílica de porosidade controlada (SPC) ativada com glutaraldeído. Neste trabalho, foram desenvolvidas estratégias para otimizar a estabilidade operacional desta preparação de lipase imobilizada. Para atingir este propósito, foram testados diferentes tipos de agentes estabilizantes com a finalidade de proteger a enzima de efeitos de agregação ou desnaturação que ocorrem devido à presença dos silanos usados durante a formação da matriz de sílica. Os aditivos usados como estabilizantes foram as proteínas (albumina e lecitina) e os polímeros orgânicos (P-ciclodextrina e polietilenoglicol) e seus efeitos foram comparados ao controle (lipase imobilizada sem aditivo). A metodologia de planejamento experimental foi utilizada para selecionar o aditivo que fornecesse maior rendimento de imobilização. Foram realizados três planejamentos fatoriais completos 22, com repetição no ponto central para avaliar a variável resposta, em função do tipo de aditivo e concentração de enzima. Entre todos os aditivos testados, rendimentos mais elevados foram obtidos quando PEG-1500 foi utilizado como agente estabilizante. De acordo com os resultados estatísticos, um novo planejamento fatorial completo 22, com repetição no ponto central foi realizado, para avaliar o rendimento de imobilização em função da concentração de PEG-1500 e lipase. Utilizandose da metodologia de superficie resposta, obteve-se o seguinte modelo matemático para o rendimento de imobilização: Y = 50,91+4,70X1 - 9,89X2 + 4,04 XI X2 onde X I e X2 correspondem aos valores codificados para as variáveis concentração de aditivo e enzima, respectivamente. A estabilidade operacional das preparações de lipase imobilizada na presença de PEG-1500 foi determinada na síntese de butirato de butila em regime de bateladas consecutivas. Adotando a estratégia proposta neste trabalho, o tempo de meia vida da lipase imobilizada em SPC foi aumentado em 13 vezes, quando comparado com o tempo de meiavida do controle (lipase imobilizada em SPC sem aditivo) / Abstract: The method for preparing the biocatalyst can influence the catalytic processo In agreement with previous studies Candida rugosa lipase can be immobilized with high activity retention on silanized controlled pore silica (CPS) activated with glutaraldehyde. This work aimed at improving the performance of the immobilized form in long-term operation. Five additives were tested in the immobilization step in order to select the most activity derivative for esterification reactions. This strategy is suggested to protect the enzyme from aggregation effects or denaturation that occur due to the presence of silane precursors used in the formation of the silica matrix. Proteins (albumin and lechitin) and polymers (B-cyclodextrin and polyethyleneglycol) were added during the immobilization procedure and their effects are reported and compared with the behavior of the immobilized biocatalyst in the absence of additive. The methodology of experimental design was used to select the most efficient additive considering the coupling yield as a response variable. Three 22 full factorial design with repetitions at the center point were employed to evaluate the immobilization yield as a function of additive type and lipase loading. The best stabilizing effect was found when small amounts of PEG-1500 and lipase were added simultaneously to the lipase onto support. According to statistic results, further 22 full factorial design with 2 repetitions at the center point were employed to evaluate the immobilization yield as a function of PEG and lipase concentrations. A response surface methodology permitted to obtain the following mathematical model for immobilization yield: Y = 50.91+4.70X1 - 9.89X2 + 4.04 Xl X2 where: Xl and X2 are the codified values for additive PEG-1.500 and enzyme concentrations, respectively. This immobilized system was used to perform esterification reactions under repeated batch cycles (for the synthesis of butyl butyrate as a model). The half-life of the lipase immobilized on CPS in the presence of PEG-1500 was found to increase 13 times when compared with the control (immobilized lipase on CPS without additive) / Mestrado / Desenvolvimento de Processos Biotecnologicos / Mestre em Engenharia Química
63

Imobilização de α-galactosidase de Aspergillus niger em resina de troca iônica Duolite A-568

Costa, Henrique Coutinho de Barcelos 27 July 2012 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Immobilized enzymes provide many advantages when compared to the usage of their free forms. Among these ones, remarkable advantages are the possibility of the biocatalyst reusability, easy separation at the end of the process, its usage in continuous way and the enhancement of its stability. This work was performed aiming the immobilization of the α-galactosidase enzyme from Aspergillus niger in ion exchange resin and the evaluation of its catalytic activity. Firstly, tests were performed in five different resins: Amberlite 252-Na, Dowex Marathon A, Dowex Marathon C, Duolite A-568 e Duolite S-761. According to the results, Duolite A-568 was chosen as the best support. Therefore, studies were done aiming the optimization of the immobilization process in this resin. Glutaraldehyde 1% (v/v) was used before the enzyme adsorption process and it enhanced the operational stability of the immobilized enzyme. Preliminary tests did not showed difference for the immobilization process at the temperatures of 25 and 40°C. A full factorial design and a central composite design were performed to study the best immobilization conditions varying the pH, the α-galactosidase concentration and the immobilization time. The results led to use the following immobilization conditions: pH 4.5; 15 g/L of α-galactosidase and 3 hours of immobilization. The temperature of maximum activity occurred at 60°C for both free and immobilized enzyme. The activation energy calculated by linear adjustment of Arrhenius equation was 5.66 kcal/mol for soluble α-galactosidase and 4.48 kcal/mol for immobilized α-galactosidase. The optimum pH range obtained for free enzyme was 4.0-5.0 and for immobilized enzyme it was 3.0-6.0. The immobilization process improved the α-galactosidase activity in alkaline pHs. Analysis of pH stability showed that both forms of enzyme were resistant for the pH ranges studied (3.5 to 7.5 for free and 3.0 to 8.0 for immobilized). However, the thermal stability of the biocatalyst immobilized in the support decreased. The kinetic studies without inhibition showed closed values of maximum speed (Vmax) for both enzyme forms (194.5 U for free and 187.7 U for immobilized). Although, the Michaelis-Menten constant (Km) of immobilized enzyme was higher than the free one (18.8 and 12.5 g/L, respectively). The hydrolysis reaction of raffinose was inhibited by the addition of the reaction products, sucrose and galactose, and the results of inhibition by galactose pointed for the competitive inhibition type. Then, storage tests of immobilized α-galactosidase showed that the enzyme maintained its activity even after 145 days when kept at the temperature of 4°C. / O uso de enzimas imobilizadas proporciona muitas vantagens em relação ao seu uso na forma livre. Dentre estas vantagens se destacam a possibilidade de reutilização do biocatalisador, a sua fácil separação ao final do processo, a utilização em modo contínuo e o aumento de sua estabilidade. Este trabalho foi desenvolvido com o objetivo de imobilizar a enzima α-galactosidase de Aspergillus niger em resina de troca iônica e avaliar a sua atividade catalítica. Inicialmente, foram feitos testes preliminares de imobilização em 5 tipos de resinas: Amberlite 252-Na, Dowex Marathon A, Dowex Marathon C, Duolite A-568 e Duolite S-761. Pelos resultados obtidos, Duolite A-568 foi selecionada como melhor suporte e, portanto, estudos foram feitos para a otimização do processo de imobilização nesta resina. Glutaraldeído na concentração de 1% (v/v) foi utilizado anteriormente ao processo de adsorção da enzima e melhorou a estabilidade operacional da α-galactosidase imobilizada. Testes preliminares não indicaram diferença do processo de imobilização para temperaturas de 25 e 40°C. Realizou-se um planejamento fatorial completo e um planejamento composto central para estudar as melhores condições de imobilização variando-se o pH, concentração de α-galactosidase e tempo de imobilização. Os resultados obtidos levaram a utilizar as seguintes condições de imobilização: pH 4,5, concentração de α-galactosidase de 15 g/L e tempo de imobilização de 3 horas. A temperatura de máxima atividade enzimática foi 60°C tanto para a enzima livre quanto imobilizada. O valor da energia de ativação encontrado pelo ajuste linear da equação de Arrhenius foi de 5,66 kcal/mol para α-galactosidase solúvel e 4,48 kcal/mol para α-galactosidase imobilizada. A faixa de pH ótimo obtido para a enzima livre foi 4,0-6,0 e para a enzima imobilizada foi 3,0-6,0. O processo de imobilização melhorou a atividade da α-galactosidase para pHs mais alcalinos. A análise de resistência ao pH mostrou que ambas as formas da enzima foram resistentes para as faixas estudadas (3,5 a 7,5 para livre e 3,0 a 8,0 para imobilizada). No entanto, a resistência térmica do biocatalisador retido no suporte foi menor. O estudo cinético sem inibição apresentou valores de velocidade máxima (Vmáx) próximos para as duas formas da α-galactosidase (194,5 U para livre e 187,7 U para imobilizada), porém o Km da forma imobilizada foi maior que o da livre (18,8 g/L e 12, 5 g/L de rafinose, respectivamente). A reação de hidrólise da rafinose foi inibida pela adição dos produtos da reação, sacarose e galactose, sendo que os resultados de inibição por galactose apontam para o tipo de inibição competitiva Por fim, testes de estocagem da α-galactosidase imobilizada mostraram que a enzima manteve sua atividade mesmo após 145 dias mantida a temperatura de 4°C. / Mestre em Engenharia Química

Page generated in 0.0899 seconds