• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of Enzyme Induced Carbonate Precipitation (EICP) for Soil Improvement

January 2015 (has links)
abstract: In enzyme induced carbonate precipitation (EICP), calcium carbonate (CaCO3) precipitation is catalyzed by plant-derived urease enzyme. In EICP, urea hydrolyzes into ammonia and inorganic carbon, altering geochemical conditions in a manner that promotes carbonate mineral precipitation. The calcium source in this process comes from calcium chloride (CaCl2) in aqueous solution. Research work conducted for this dissertation has demonstrated that EICP can be employed for a variety of geotechnical purposes, including mass soil stabilization, columnar soil stabilization, and stabilization of erodible surficial soils. The research presented herein also shows that the optimal ratio of urea to CaCl2 at ionic strengths of less than 1 molar is approximately 1.75:1. EICP solutions of very high initial ionic strength (i.e. 6 M) as well as high urea concentrations (> 2 M) resulted in enzyme precipitation (salting-out) which hindered carbonate precipitation. In addition, the production of NH4+ may also result in enzyme precipitation. However, enzyme precipitation appeared to be reversible to some extent. Mass soil stabilization was demonstrated via percolation and mix-and-compact methods using coarse silica sand (Ottawa 20-30) and medium-fine silica sand (F-60) to produce cemented soil specimens whose strength improvement correlated with CaCO3 content, independent of the method employed to prepare the specimen. Columnar stabilization, i.e. creating columns of soil cemented by carbonate precipitation, using Ottawa 20-30, F-60, and native AZ soil was demonstrated at several scales beginning with small columns (102-mm diameter) and culminating in a 1-m3 soil-filled box. Wind tunnel tests demonstrated that surficial soil stabilization equivalent to that provided by thoroughly wetting the soil can be achieved through a topically-applied solution of CaCl2, urea, and the urease enzyme. The topically applied solution was shown to form an erosion-resistant CaCO3 crust on fine sand and silty soils. Cementation of erodible surficial soils was also achieved via EICP by including a biodegradable hydrogel in the stabilization solution. A dilute hydrogel solution extended the time frame over which the precipitation reaction could occur and provided improved spatial control of the EICP solution. / Dissertation/Thesis / Doctoral Dissertation Civil and Environmental Engineering 2015
2

Muschel-inspirierte Polymerisation: Synthetische Bioadhäsive für wasserbasierte Klebstoffe und meerwasserresistente Beschichtungen

Horsch, Justus 09 January 2020 (has links)
Miesmuscheln inspirieren zur nächsten Generation von wasserbasierten Nassklebstoffen. Muschelfußproteine (mfps) ermöglichen es den Muscheln, sich an jede Oberfläche zu haften und zeigen bemerkenswerte Eigenschaften, die insbesondere durch das Aminosäurederivat 3,4 Dihydroxyphenylalanin (Dopa) verursacht werden. Da der Einfluss von Wasser nach wie vor eine große Herausforderung für Klebeanwendungen darstellt und die Herstellung und Reinigung von Klebeproteinen viel Zeit und Kosten erfordert, ist ein einfacher Zugang zu biomimetischen Klebstoffen von großem Interesse. Die vorliegende Arbeit untersucht einen neuartigen Muschel-inspirierten Polymerisationsansatz zur Herstellung von adhäsiven Proteinanaloga aus Oligopeptiden (Unimeren). Der Polymerisationsmechanismus nutzt einen Reaktionsweg, der in Miesmuscheln auftritt und beruht auf einer enzymatischen Oxidation von Tyrosin zu Dopachinon, das mit freien Thiolen aus Cystein Cysteinyldopa bildet, wodurch Unimere verknüpft und adhäsive Funktionalitäten erzeugt werden. Innerhalb weniger Minuten entstehen hochmolekulare Polymere, die ein vielseitiges Adsorptions- und starkes Adhäsionsverhalten demonstrieren. Die Proteinanaloga weisen eine signifikante Multischicht-Adsorption auf hydrophilen sowie hydrophoben Oberflächen auf und sind resistent gegenüber Spülschritten mit hochkonzentrierten Salz-Lösungen. Die beobachteten Adhäsionsenergien liegen im Bereich von kommerziellen mfp-Extrakten und überschreiten sogar berichtete Werte für isolierte mfps. Die Arbeit präsentiert eine einfache Synthese künstlicher mfp-Analoga, die in der Lage sind Aspekte natürlicher mfps nachzuahmen und potenziell zur Entwicklung von wasserresistenten Universalklebstoffen beitragen. Um die Bedingungen für eine kostengünstige, großtechnische Produktion zu verbessern, werden zusätzlich alternative Synthesewege für die enzymfreie Herstellung Muschel-inspirierter Polymere untersucht, die auf der chemischen Oxidation von Dopa-haltigen Unimeren beruhen. / Marine mussels provide inspiration for the next generation of water-based, wet adhesives. Mussel foot proteins (mfps) enable them to attach to any surface and exhibit remarkable properties, notably due to the amino acid derivative 3,4-dihydroxyphenylalanine (Dopa). Since the influence of water still constitutes a major challenge for gluing applications and large-scale production and purification of adhesive proteins is time-consuming and costly, an easy access route toward biomimetic adhesives is of high interest. This thesis investigates a novel mussel-inspired polymerization approach for the production of adhesive protein analogues from oligopeptides (unimers). The polymerization mechanism exploits a distinct reaction pathway, occurring in mussels and relies on enzyme-mediated oxidation of tyrosine to Dopaquinone in the unimers, which forms cysteinyldopa with free thiols from cysteine, thereby linking unimers and generating adhesive moieties. Within a few minutes high molecular weight polymers are obtained that show versatile adsorption and strong adhesion behaviour. The protein analogues exhibit significant multilayer adsorption onto hydrophilic as well as hydrophobic surfaces and resist rinsing with highly saline solutions. Comparative adhesion studies on silica reveal adhesion energies that are in the same range as commercial mussel foot protein extracts and even exceed reported values for isolated foot proteins that constitute the gluing interfaces. The approach offers facile access toward artificial mussel foot proteins that are capable of mimicking aspects of the natural ideal and potentially helps to develop next-generation universal water resistant glues. In order to further improve the conditions regarding cost-efficient and large-scale production in the future, alternative synthesis routes for the enzyme-free generation of mussel-inspired polymers based on chemical oxidation of Dopa containing unimers are additionally explored.

Page generated in 0.0506 seconds