171 |
Enzyme modified magnetic nanoparticles : an approach for biomass conversion processes /Lucena, Guilherme Nunes. January 2020 (has links)
Orientador: Rodrigo Fernando Costa Marques / Resumo: A biomassa lignocelulósica vem se destacando como uma matéria-prima essencial para a produção de muitos produtos químicos de interesse industrial em áreas como a produção de energia, alimentos, fármacos, agricultura, meio ambiente e assim por diante. Apesar disso, muitas aplicações vêm esbarrando em uma série de dificuldades encontradas nos processos de conversão enzimática, como instabilidade operação das enzimas, alto custo de produção e purificação, reações de inibição e problemas de recuperação e reciclo. Para contornar esses problemas, muitos métodos de imobilização enzimática têm surgido, entre os quais, destaca-se a obtenção de agregados enzimáticos reticulados magnéticos (MCLEAs). Esta classe de materiais é obtida a partir da reação de reticulação entre agregados físicos de enzimas e suportes magnéticos, o qual pode unir as importantes propriedades catalíticas dos agregados físicos (como resultado da manutenção da estrutura nativa da enzima) à capacidade de recuperação e reciclo do suporte magnético (devido suas propriedades magnéticas intrínsecas). Frente a isso, esse trabalho relata a síntese, caracterização e potencial aplicação de MCLEAs de enzimas celulases em processos de conversão de celulose. Dividido em três capítulos, primeiramente é apresentado um review sobre o estado da arte no que diz respeito a obtenção de produtos de valor agregado a partir da biomassa lignocelulósica utilizando MCLEAs. No segundo capítulo, diferentes MCLEAs foram preparados na presenç... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Lignocellulosic biomass has highlighted as an essential renewable raw material for production of many value-added chemicals of industrial interest in field as energy production, food, pharmaceutical, agriculture, environment and so on. Despite it, many applications have wrought with a series of difficulties in regarding enzymatic conversion processes, as enzyme operational instability, high production and purification cost, inhibition reactions, and issues of recovery and recycle. To overcome these issues, many enzyme immobilization methods have emerged, among which highlights the obtention of magnetic-cross linked enzyme aggregates (MCLEAs). This materials class is obtained from cross-linking reaction between enzyme physical aggregates and magnetic supports, which can gather the important catalytic properties of the physical aggregates (as a result of enzyme native structure maintenance) to recovery and recycle capacity of magnetic nanoparticles (as result of its intrinsic magnetic properties). Faced it, this work reports the synthesis, characterization and potential application of different cellulases MCLEAs in the cellulose enzymatic conversion process. Sectioned in three chapters, firstly is presented a review about the state of art in concern to obtention of value-added chemicals from lignocellulosic biomass using MCLEAs. In the second chapter, different MCLEAs were prepared in the presence of quitosana-coated magnetic nanoparticles with three different precipitation age... (Complete abstract click electronic access below) / Doutor
|
172 |
Pyrimidine Salvage Enzymes in Microorganisms: Labyrinths of Enzymatic DiversityBeck, Debrah A. (Debrah Ann) 12 1900 (has links)
Pyrimidine salvage pathways are essential to all cells. They provide a balance of RNA synthesis with the biosynthetic pathway in pyrimidine prototrophs and supply all the pyrimidine requirements in auxotrophs. While the pyrimidine biosynthetic pathway is found in almost all organisms and is nearly identical throughout nature, the salvage pathway often differs from species to species, with aspects of salvage seen in every organism. Thus significant taxonomic value may be ascribed to the salvage pathway. The pyrimidine salvage pathways were studied in 55 microorganisms. Nine different salvage motifs, grouped I-IX, were identified in this study based on the presence of different combinations of the following enzymes: cytidine deaminase (Cdd), cytosine deaminase (Cod), uridine phosphorylase (Udp), uracil phosphoribosyltransferase (Upp), uridine hydrolase (Udh), nucleoside hydrolase (Nuh), uridine/cytidine kinase (Udk), 5'-nucleotidase and CMP kinase (Cmk).
|
173 |
Active Site Interactions in Proteolytic EnzymesAsante-Appiah, Ernest January 1994 (has links)
<p>The HIV-1 virus encodes a protease essential for the processing of polyprotein precursors into mature viral proteins. This enzyme is a primary target for drug design against AIDS. Concurrent effects of inhibitors targeted to defined regions of the extended active site were investigated using Yonetani-Theorell kinetics to understand its complex specificity requirements. Kinetic data revealed that the simultaneous presence of two specific inhibitors may increase their binding affinity for the enzyme. A 100-fold enhancement in binding affinity was observed in certain instances. Results from this work showed a correlation between inhibitor synergism and substrate specificity thus implicating subsite interactions in enzyme catalysis.</p> <p>To facilitate the analysis of enzyme-inhibitor interactions an improved graphical method, the combination plot, was developed as an alternative to the Yonetani-Theorell plot. The method generates a single straight line rather than a family of lines which is the traditional approach in such kinetic studies. The slope of the plot, 1/α, quantitatively measures the extent and nature of interaction between two inhibitors on their target enzyme. The approach was easily extended to analyze, for the first time, the interaction between three competitive inhibitors on an enzyme. The combination approach potentially has broad applications for kinetic analysis.</p> <p>Combination plots were used in the discovery of gem-dialkyl succinic acid derivatives as a new class of unusually potent reversible inhibitors of carboxypeptidases A and B. 2-Ethyl-2-methylsuccinic acid binds to carboxypeptidases A and B with dissociation constants of 1.1 X 10ˉ⁷ M and 3.4 X 10ˉ⁶ M respectively. The low dissociation constants of the inhibitors for the zinc proteases can be attributed primarily to the gem-dialkyl groups which presumably make very important hydrophobic contacts within the active site. The inhibitors may also act as zinc ligands while possessing sufficient affinity for the carboxyl-recognition site in the enzymes.</p> / Doctor of Philosophy (PhD)
|
174 |
The effect of centrifugal fields on enzymatic reactionsDohm, Gerald Lynis. January 1966 (has links)
LD2668 .T4 1966 D656 / Master of Science
|
175 |
Effect of protease enzymes on bread flavorEl-Dash, Ahmed A. January 1966 (has links)
LD2668 .T4 1966 E38 / Master of Science
|
176 |
The demonstration, characterization and partial purification of a peroxidase and NADH oxidase in uterine tissueNickel, Karen Louise. January 1966 (has links)
Call number: LD2668 .T4 1966 N631 / Master of Science
|
177 |
Physical studies and synthetic modeling of the molybdenum-containing enzyme sulfite oxidase.Kipke, Cary Alan. January 1988 (has links)
This research has been directed at the study of both the enzyme sulfite oxidase and molybdenum model chemistry. A modification of a previously published procedure has been used to purify sulfite oxidase in high yield which is well-suited for experiments requiring prosthetically intact enzyme and which is not contaminated with extraneous heme or with other redox active proteins. Laser flash photolysis was used to study the reaction of photoproduced 5-deazariboflavin, lumiflavin, and riboflavin semiquinone radicals with the redox centers of purified sulfite oxidase. Two distinctly different intramolecular electron transfer processes were observed between the molybdenum and heme sites of the enzyme, and these assignments were supported by flash photolysis studies of the cyanide-inactivated enzyme and the sulfite oxidase heme peptide. Microcoulometric experiments on sulfite oxidase have shown that the enzyme requires the addition of three electrons for complete subunit reduction. Midpoint potentials for the Mo(VI)/Mo(V), Mo(V)/Mo(IV), and Fe(III)/Fe(II) couples have been obtained under varied buffer conditions. The midpoint potentials obtained under High-pH and Low-pH conditions provided a means for reductively titrating the enzyme to the Mo(V) oxidation state for EXAFS studies. EXAFS of sulfite oxidase under High-pH and Low-pH conditions have provided the first example of a structural study of the three accessible oxidation states (Mo(VI), Mo(V), and Mo(IV)). A biologically relevant synthetic model for the formation of the Mo(V) Low-pH form of sulfite oxidase has been developed. The Mo(V) model compound closely resembles the minimum coordination environment for the Mo(V) Low-pH form of sulfite oxidase as determined by EXAFS. Using synchrotron radiation, molybdenum L-edge x-ray absorption spectra have been obtained for a variety of oxomolybdenum(V) compounds which serve as models for sulfite oxidase. An attempt has been made to correlate unique features of the molecules to the observed 2P → 4d electronic transitions.
|
178 |
Defining domains of the EcoK methylase by mutational analyses and DNA sequence comparisonsKelleher, Julia E. January 1990 (has links)
No description available.
|
179 |
The purification and properties of trimethylamine N-oxide reductase from Alteromonas Sp. NCMB 400Clarke, Graham John January 1984 (has links)
No description available.
|
180 |
Identification and characterization of proteolytic enzymes in Trichinella spp賴玉耀, Lai, Yuk-yeu, William. January 1996 (has links)
published_or_final_version / Zoology / Master / Master of Philosophy
|
Page generated in 0.0566 seconds