Spelling suggestions: "subject:"uranlagerstätte"" "subject:"lagerstätte""
1 |
Kupfer im Erzgebirge: Kupfererz - Vorkommen und Abbau im Erzgebirge zwischen 1470 und 1750Bittmann, Hartmut Carsten January 2014 (has links)
Über Jahrhunderte ist das Erzgebirge durch Montanindustrie geprägt worden. Zahlreiche Publikationen beschreiben lagerstättenkundliche und bergbaugeschichtliche Verhältnisse. Besondere Beachtung fanden dabei die Erze des Silbers und Zinns. Eine umfassende Übersicht zu Vorkommen und Abbau von Kupfer liegt jedoch noch nicht vor. Anliegen der vorliegenden Untersuchung war es deshalb, eine Zusammenschau der erzgebirgischen Kupfervorkommen zu erarbeiten. Dabei stand im Blickpunkt, in welchen Lagerstättentypen Kupfer mineralisierte und in welchen Revieren Kupfer nachweisbar ist. Dieser Überblick konnte durch Vergleichen von lagerstättenkundlicher Literatur und Kartenmaterial erreicht werden.
Des Weiteren sollten Abbaureviere und Abbaumengen von Kupfer im Zeitraum von 1470 bis 1750 unter Zuhilfenahme von Material aus dem Bergarchiv Freiberg und einzelner Hinweise in weiterer, den erzgebirgischen Bergbau betreffender Literatur ausgemacht werden.
Die Recherchen haben gezeigt, dass Kupferminerale, fast ausschließlich sulfidisch mineralisiert, in allen Lagerstättentypen anzutreffen sind. Bezüglich der räumlichen Verteilung sind verschiedene Schwerpunkte erkennbar.
Für den Bergbau spielte Kupfer trotz des engen verhüttungstechnischen Zusammenhangs mit Silbererzen in vielen Bergbaurevieren eine nur untergeordnete Rolle. Größere Mengen des Buntmetalls wurden in Schneeberg-Oberschlema, in Breitenbrunn, bei Annaberg, bei Marienberg, bei Freiberg und in Sadisdorf gefördert.
Über Vorkommen und historischen Abbau von Kupfererzen gibt die Arbeit einen Überblick, der den sächsischen und böhmischen Teil des Erzgebirges umfasst. Damit ist eine Grundlage für weiterführende Untersuchungen zur Bedeutung von Kupfer in der sächsischen Montangeschichte geschaffen.:Abkürzungsverzeichnis..........3
Abbildungsverzeichnis..........3
Tabellenverzeichnis..........4
1. Einleitung..........6
2. Untersuchungsgebiet..........9
2.1 Räumliche Abgrenzung..........9
2.2 Geologischer Bau und Entwicklungsgeschichte..........13
2.3 Physisch-geographischer Überblick..........17
2.3.1 Boden..........17
2.3.2 Relief..........18
2.3.3 Klima und Vegetation..........19
3. Material und Methodik..........20
3.1 Teilgebiete innerhalb des Untersuchungsraumes..........20
3.2 Untersuchungen zu den Kupferlagerstätten im Erzgebirge..........22
3.3 Untersuchungen zum Kupfererzabbau 1470 bis 1750..........25
3.4 Begriffe, Einheiten und Namen..........26
4. Lagerstätten im Erzgebirge..........27
4.1 Überblick..........27
4.2 Prävariszische Erzlagerstätten..........29
4.2.1 Einordnung..........29
4.2.2 Konkordante Erzlager..........30
4.2.3 Prävariszische Skarne..........31
4.2.4 Felsitmineralisation..........31
4.3 Variszische Erzlagerstätten..........32
4.3.1 Einordnung..........32
4.3.2 Greisen und Zwitter..........32
4.3.3 Variszische Skarne..........33
4.4 Postvariszische Erzlagerstätten..........33
5. Vorkommen von Kupferlagerstätten im Erzgebirge..........35
5.1 Teilgebiet Schneeberg-Schwarzenberg..........35
5.1.1 Störungssysteme und hydrothermale Gänge..........35
5.1.2 Kupfermineralisationen in den Folgengruppen..........37
5.1.3 Einzelne Kupfervorkommen im Teilgebiet..........38
5.2 Teilgebiet Marienberg-Annaberg..........43
5.2.1 Störungssysteme und hydrothermale Gänge..........43
5.2.2 Kupfermineralisationen in den Folgengruppen..........46
5.2.3 Einzelne Kupfervorkommen im Teilgebiet..........47
5.3 Teilgebiet Freiberg..........50
5.3.1 Störungssysteme und hydrothermale Gänge..........50
5.3.2 Kupfermineralisation in den Folgengruppen..........52
5.3.3 Einzelne Kupfervorkommen im Teilgebiet..........55
5.4 Teilgebiet Altenberg-Glashütte..........56
5.4.1 Ausrichtung und Mineralisation der hydrothermalen Gänge..........56
5.4.2 Einzelne Kupfervorkommen im Teilgebiet..........59
6. Kupfererzabbau von 1470 bis 1750..........61
6.1 Teilgebiet Schneeberg-Schwarzenberg..........61
6.1.1 Kupferförderung im gesamten Teilgebiet..........61
6.1.2 Einzelne Abbaugebiete im Teilgebiet..........61
6.2 Teilgebiet Marienberg-Annaberg..........67
6.2.1 Kupferförderung im gesamten Teilgebiet..........67
6.2.2 Einzelne Abbaugebiete im Teilgebiet..........68
6.3 Teilgebiet Freiberg..........74
6.3.1 Kupferförderung im gesamten Teilgebiet..........74
6.3.2 Einzelne Abbaugebiete im Teilgebiet..........74
6.4 Teilgebiet Altenberg-Glashütte..........77
6.4.1 Kupferförderung im gesamten Teilgebiet..........77
6.4.2 Einzelne Abbaugebiete im Teilgebiet..........77
7. Überblick Teilgebiet Böhmisches Erzgebirge..........80
8. Ergebnisse..........81
9. Ausblick..........86
10. Zusammenfassung..........87
Liste bergmännischer Begriffe und Maße..........91
Liste der Minerale..........92
Literaturverzeichnis..........93 / The mountains Erzgebirge have been characterized by mining industries for centuries. Many publications describe the natural mineral deposits and the historical mining conditions. Special regards are thereby paid to silver and tin ore. However an extensive summary of copper deposits and mining is not available.
In which types of mineral deposits copper is mineralised and in which districts copper can be proved? Therefore, the intention of this study was a synopsis about the copper deposits in the mountains Erzgebirge by comparing literature and maps.
In addition, mining districts and mining quantity of copper between 1470 and 1750 should be arranged. For this purpose, material from the Bergarchiv Freiberg and other literature about regional mining was used.
The research showed that copper minerals, nearly exclusive sulphide-mineralised, can be proved in every type of mineral deposits. In terms of the zonal distribution, there are centres visible.
In spite of the closely relation to silver ore in the smelting processes copper was not very important in many mining districts. A larger quantity of copper ore was won in Schneeberg-Oberschlema, in Breitenbrunn, near Annaberg, near Marienberg, near Freiberg and in Sadisdorf.
The study shows an overview of deposits and historical mining of copper ore in the Saxon and Bohemian parts of the Erzgebirge. So the work can be a basis for continuative studies about the importance of copper for the Saxon mining history.:Abkürzungsverzeichnis..........3
Abbildungsverzeichnis..........3
Tabellenverzeichnis..........4
1. Einleitung..........6
2. Untersuchungsgebiet..........9
2.1 Räumliche Abgrenzung..........9
2.2 Geologischer Bau und Entwicklungsgeschichte..........13
2.3 Physisch-geographischer Überblick..........17
2.3.1 Boden..........17
2.3.2 Relief..........18
2.3.3 Klima und Vegetation..........19
3. Material und Methodik..........20
3.1 Teilgebiete innerhalb des Untersuchungsraumes..........20
3.2 Untersuchungen zu den Kupferlagerstätten im Erzgebirge..........22
3.3 Untersuchungen zum Kupfererzabbau 1470 bis 1750..........25
3.4 Begriffe, Einheiten und Namen..........26
4. Lagerstätten im Erzgebirge..........27
4.1 Überblick..........27
4.2 Prävariszische Erzlagerstätten..........29
4.2.1 Einordnung..........29
4.2.2 Konkordante Erzlager..........30
4.2.3 Prävariszische Skarne..........31
4.2.4 Felsitmineralisation..........31
4.3 Variszische Erzlagerstätten..........32
4.3.1 Einordnung..........32
4.3.2 Greisen und Zwitter..........32
4.3.3 Variszische Skarne..........33
4.4 Postvariszische Erzlagerstätten..........33
5. Vorkommen von Kupferlagerstätten im Erzgebirge..........35
5.1 Teilgebiet Schneeberg-Schwarzenberg..........35
5.1.1 Störungssysteme und hydrothermale Gänge..........35
5.1.2 Kupfermineralisationen in den Folgengruppen..........37
5.1.3 Einzelne Kupfervorkommen im Teilgebiet..........38
5.2 Teilgebiet Marienberg-Annaberg..........43
5.2.1 Störungssysteme und hydrothermale Gänge..........43
5.2.2 Kupfermineralisationen in den Folgengruppen..........46
5.2.3 Einzelne Kupfervorkommen im Teilgebiet..........47
5.3 Teilgebiet Freiberg..........50
5.3.1 Störungssysteme und hydrothermale Gänge..........50
5.3.2 Kupfermineralisation in den Folgengruppen..........52
5.3.3 Einzelne Kupfervorkommen im Teilgebiet..........55
5.4 Teilgebiet Altenberg-Glashütte..........56
5.4.1 Ausrichtung und Mineralisation der hydrothermalen Gänge..........56
5.4.2 Einzelne Kupfervorkommen im Teilgebiet..........59
6. Kupfererzabbau von 1470 bis 1750..........61
6.1 Teilgebiet Schneeberg-Schwarzenberg..........61
6.1.1 Kupferförderung im gesamten Teilgebiet..........61
6.1.2 Einzelne Abbaugebiete im Teilgebiet..........61
6.2 Teilgebiet Marienberg-Annaberg..........67
6.2.1 Kupferförderung im gesamten Teilgebiet..........67
6.2.2 Einzelne Abbaugebiete im Teilgebiet..........68
6.3 Teilgebiet Freiberg..........74
6.3.1 Kupferförderung im gesamten Teilgebiet..........74
6.3.2 Einzelne Abbaugebiete im Teilgebiet..........74
6.4 Teilgebiet Altenberg-Glashütte..........77
6.4.1 Kupferförderung im gesamten Teilgebiet..........77
6.4.2 Einzelne Abbaugebiete im Teilgebiet..........77
7. Überblick Teilgebiet Böhmisches Erzgebirge..........80
8. Ergebnisse..........81
9. Ausblick..........86
10. Zusammenfassung..........87
Liste bergmännischer Begriffe und Maße..........91
Liste der Minerale..........92
Literaturverzeichnis..........93
|
2 |
Kupfer im ErzgebirgeBittmann, Hartmut Carsten 12 May 2015 (has links) (PDF)
Über Jahrhunderte ist das Erzgebirge durch Montanindustrie geprägt worden. Zahlreiche Publikationen beschreiben lagerstättenkundliche und bergbaugeschichtliche Verhältnisse. Besondere Beachtung fanden dabei die Erze des Silbers und Zinns. Eine umfassende Übersicht zu Vorkommen und Abbau von Kupfer liegt jedoch noch nicht vor. Anliegen der vorliegenden Untersuchung war es deshalb, eine Zusammenschau der erzgebirgischen Kupfervorkommen zu erarbeiten. Dabei stand im Blickpunkt, in welchen Lagerstättentypen Kupfer mineralisierte und in welchen Revieren Kupfer nachweisbar ist. Dieser Überblick konnte durch Vergleichen von lagerstättenkundlicher Literatur und Kartenmaterial erreicht werden.
Des Weiteren sollten Abbaureviere und Abbaumengen von Kupfer im Zeitraum von 1470 bis 1750 unter Zuhilfenahme von Material aus dem Bergarchiv Freiberg und einzelner Hinweise in weiterer, den erzgebirgischen Bergbau betreffender Literatur ausgemacht werden.
Die Recherchen haben gezeigt, dass Kupferminerale, fast ausschließlich sulfidisch mineralisiert, in allen Lagerstättentypen anzutreffen sind. Bezüglich der räumlichen Verteilung sind verschiedene Schwerpunkte erkennbar.
Für den Bergbau spielte Kupfer trotz des engen verhüttungstechnischen Zusammenhangs mit Silbererzen in vielen Bergbaurevieren eine nur untergeordnete Rolle. Größere Mengen des Buntmetalls wurden in Schneeberg-Oberschlema, in Breitenbrunn, bei Annaberg, bei Marienberg, bei Freiberg und in Sadisdorf gefördert.
Über Vorkommen und historischen Abbau von Kupfererzen gibt die Arbeit einen Überblick, der den sächsischen und böhmischen Teil des Erzgebirges umfasst. Damit ist eine Grundlage für weiterführende Untersuchungen zur Bedeutung von Kupfer in der sächsischen Montangeschichte geschaffen. / The mountains Erzgebirge have been characterized by mining industries for centuries. Many publications describe the natural mineral deposits and the historical mining conditions. Special regards are thereby paid to silver and tin ore. However an extensive summary of copper deposits and mining is not available.
In which types of mineral deposits copper is mineralised and in which districts copper can be proved? Therefore, the intention of this study was a synopsis about the copper deposits in the mountains Erzgebirge by comparing literature and maps.
In addition, mining districts and mining quantity of copper between 1470 and 1750 should be arranged. For this purpose, material from the Bergarchiv Freiberg and other literature about regional mining was used.
The research showed that copper minerals, nearly exclusive sulphide-mineralised, can be proved in every type of mineral deposits. In terms of the zonal distribution, there are centres visible.
In spite of the closely relation to silver ore in the smelting processes copper was not very important in many mining districts. A larger quantity of copper ore was won in Schneeberg-Oberschlema, in Breitenbrunn, near Annaberg, near Marienberg, near Freiberg and in Sadisdorf.
The study shows an overview of deposits and historical mining of copper ore in the Saxon and Bohemian parts of the Erzgebirge. So the work can be a basis for continuative studies about the importance of copper for the Saxon mining history.
|
3 |
Two Centuries of Commodity Cycles - Dynamics of the Metals & Mining Industry in light of Modern Portfolio TheoryPfeifer, Jan 14 July 2020 (has links)
This thesis explores the application of Markowitz' Modern Portfolio Theory onto 220 years of financial returns for 13 metals and 21 poly-metallic ore types. The interdisciplinary research shows that poly-metallic ores can be described as naturally occurring portfolios that were diversified by natural geological processes. Safest and optimal portfolios for metals and ores can be computed for different time horizons using portfolio optimization algorithms. Results for optimized ore portfolios are thereby subject to geological constraints. The study revealed that commodity cycles last between six and twenty years and exhibit clockwise and counterclockwise motions in the risk-return framework. The cycle length differences for clockwise cycles are statistically significant and thus specific to all investigated metals and ores. By incorporating novel cycle parameters into decision making tools it is suggested that current industry decisions for resource development can be improved. Insights into the performance of metals and ores through the industrial cycles, as well as into the frequency of profitable super cycles can assist Metals & Mining executives in strategic planning and investment.:Introduction 1
Data 3
Metals & ore types studied 5
2.1 Metals.......................................... 5
2.2 Ore types ........................................ 5
2.3 Prices .......................................... 10
2.4 Summary ........................................ 12
II Analysis 13
3 Modern Portfolio Theory 15
3.1 Overview ........................................ 15
3.2 Definitions........................................ 15
3.3 Assumptions ...................................... 17
3.4 Discussion & Conclusion................................ 18
4 Poly-metallic ores as natural portfolios 19
4.1 Objectives........................................ 19
4.2 Results.......................................... 19
4.3 Summary & Discussion................................. 24
4.4 Conclusion ....................................... 25
5 Static portfolio optimization 27
5.1 Objectives........................................ 27
5.2 Assumptions ...................................... 27
5.3 Results.......................................... 27
5.4 Summary & Discussion................................. 31
5.5 Conclusion ....................................... 32
6 Dynamic portfolio optimization 33
6.1 Assumptions ...................................... 33
6.2 Results.......................................... 34
6.3 Summary & Discussion................................. 44
6.4 Conclusion ....................................... 45
7 Commodity cycles & metal assets 47
7.1 Commodity cycles ................................... 47
7.2 Commodity cycle observations ............................ 54
7.3 Summary ........................................ 76
7.4 Discussion........................................ 77
7.5 Conclusion ....................................... 78
III Application 81
8 Commodity cycles & resource development strategies 83
8.1 The timing of mine development and mining start-up................ 83
8.2 Lead times from discovery to operation........................ 88
8.3 Exploration....................................... 89
8.4 Project valuation considerations............................ 91
8.5 Summary & Discussion................................. 92
8.6 Conclusion ....................................... 93
9 Industrial cycles & modern history 95
9.1 The Metal Markets Indicator-MMI ......................... 95
9.2 The Metal Markets Indicator & the economy .................... 97
9.3 The MMI & military conflict ............................. 105
9.4 MMI cyclicality..................................... 115
9.5 Summary & Discussion................................. 122
9.6 Conclusion ....................................... 123
10 Industrial cycles & metal performance 125
10.1 Methodology ...................................... 125
10.2 Metal performance during technological epochs ................ 126
10.3 Discussion........................................ 133
10.4 Conclusion ....................................... 137
11 Industrial cycles & ore type preferences 139
11.1 Coal Age ........................................ 139
11.2 Oil Age ......................................... 142
11.3 Atomic Age....................................... 144
11.4 Discussion........................................ 146
11.5 Conclusion ....................................... 150
12 Industrial cycles & ore provinces 151
12.1 Ore genetic models and industrial cycles....................... 151
12.2 Ore geology and geography .............................. 154
12.3 Ore provenances and mining technology ....................... 156
12.4 Discussion........................................ 157
12.5 Conclusion ....................................... 157
13 The state and future of the M&M Industry 159
13.1 The current state.................................... 159
13.2 The dawn of a new Industrial Age .......................... 163
13.3 The future........................................ 164
13.4 Summary & Discussion................................. 167
13.5 Conclusion ....................................... 168
14 Summary 169
15 Conclusion 171
IV Appendix 173
Bibliography 233
Index 245
|
4 |
MINESTIS, the route to resource estimatesWagner, Laurent 03 November 2015 (has links) (PDF)
Minestis software allows geological domain modeling and resource estimation through an efficient and simplified geostatistics-based workflow. It has been designed for all those, geologists, mining engineers or auditors, for whom quick production of quality models is at the heart of their concerns.
|
5 |
MINESTIS, the route to resource estimates: Presentation of 3D geomodeling software, held at IAMG 2015 in FreibergWagner, Laurent 03 November 2015 (has links)
Minestis software allows geological domain modeling and resource estimation through an efficient and simplified geostatistics-based workflow. It has been designed for all those, geologists, mining engineers or auditors, for whom quick production of quality models is at the heart of their concerns.
|
6 |
The Per Geijer iron ore deposits: Characterization based on mineralogical, geochemical and process mineralogical methodsKrolop, Patrick 04 April 2022 (has links)
The Per Geijer iron oxide-apatite deposits are important potential future resources for Luossavaara-Kiirunavaara Aktiebolag (LKAB), which has been continuously mining magnetite/hematite ores in northern Sweden for almost 130 years. The Per Geijer deposits reveal a high phosphorus content and vary from magnetite-dominated to hematite-dominated ores, respectively. The high phosphorus concentration of these ores results from highly elevated content of apatite as gangue mineral. Reliable, robust, and qualitative characterization of the mineralization is required as these ores inherit complex mineralogical and textural features. The precise mineralogical information obtained by optical microscopy, SEM-MLA and Raman improves the characterization of ore types and will benefit future processing strategies for this complex mineralization. The different approaches demonstrate advantages and disadvantages in classification, imaging, discrimination of iron oxides, and time consumption of measurement and processing. A comprehensive mineral-chemical dataset of magnetite, hematite and apatite obtained by electron microprobe analysis (EPMA) and LA-ICP-MS from representative drill core samples is presented. Magnetite, four different types of hematite and five types of apatite constitute the massive orebodies: Primary and pristine magnetite with moderate to high concentrations of Ti (∼61–2180 ppm), Ni (∼11–480 ppm), Co (∼5–300 ppm) and V (∼553–1831 ppm) indicate a magmatic origin for magnetite. The presence of fluorapatite and associated monazite inclusions and disseminated pyrite enclosed by magnetite with high Co:Ni ratios (> 10) in massive magnetite ores are consistent with a high temperature (∼ 800°C) genesis for the deposit. The different and abundant types of hematite, especially hematite type I, state subsequent hydrothermal events.
Chromium, Ni, Co and V in both magnetite and hematite have low concentrations in terms of current product regulations and thus no effect on final products in the future. In terms of a possible future hematite product, titanium seems to be the most critical trace element due to very high concentrations in hematite types I and IV, of which type I is most abundant in zones dominated by hematite. Further interest on other products is generated due to the high variability of hematite and apatite in some of these ores.
Information obtained from comminution test works in the laboratory scale can be utilized to characterize ore types and to predict the behavior of ore during comminution circuit in the industrial scale. Comminution tests with a laboratory rod and ball mill of 13 pre-defined ore types from the Per Geijer iron-oxide apatite deposits were conducted in this study. The highest P80 values were obtained by grinding in the rod mill for 10 minutes only (step A). Grinding steps B (25 min ball mill) and C (35 min ball mill) reveal very narrow P80 values. Ore types dominated by hematite have significantly higher P80 values after the primary grinding step (A), which indicates different hardness of the ore types. P80 values are generally lowest after the secondary grinding step C ranging between 26 µm (ore type M1a) and 80 µm (ore type H2a). Generally, Fe content increases in the finer particle size classes while CaO and P contents decrease. The influence of silica or phosphorus seems to be dependent on the dominant iron oxide. Magnetite-dominated ore types are more likely to be affected in their comminution behavior by the presence of the silicates. Contrary, hematite-dominant ore types are rather influenced by the presence of apatite. The difference in the degree of liberation of magnetite and hematite between ore types depends rather on size fractions than the amount of gangue in the ore. Davis tube data indicates that magnetite can be separated from gangue quite efficiently in the magnetite-dominated ore types. Contrary to magnetite ore, hematite-dominated ore types cannot be processed by DT. It is favored to use strong magnetic separation in order to achieve a desirable hematite concentrate. The magnetic material recovered by DT is most efficiently separated at an intensity current of 0.2 A, whereas above 0.5 A the separation process is neglectable. Based on comminution and magnetic separation tests a consolidation to eight ore types is favored which supports possible future mining of the Per Geijer deposits.:Contents
ABSTRACT ……………………………………………………………………… I
CONTENTS ……………………………………………………………………… II
LIST OF FIGURES AND TABLES ……………………………………………… IV
LIST OF ABBREVIATIONS ……………………………………………… V
1 INTRODUCTION ……………………………………………………… 1
1.1 Background and motivation of study ……………………………… 2
1.2 Previous and current work on the Per Geijer deposits ……………… 3
1.3 The need for mineral processing and in-situ ore description ……………… 4
1.4 General and generic aspects on iron oxide apatite deposits ……………… 5
Chapter A
2 REGIONAL GEOLOGY ………………………………………………. 7
2.1 Local geology of the Kiruna area ……………………………………… 7
2.2 Geology of the Per Geijer deposits ……………………………………… 9
3 METHODOLOGY ……………………………………………………… 12
3.1 Core sampling and preparation ……………………………………… 12
3.2 SEM – MLA in-situ ore ……………………………………………… 14
3.3 Electron Probe Microanalyses (EPMA) ……………………………… 15
3.3.1 Iron oxide measurements ……………………………………… 15
3.3.2 Apatite measurements ……………………………………… 15
3.4 In-situ LA-ICP-MS ……………………………………………………… 16
3.5 Whole-rock geochemistry ……………………………………………… 18
3.5.1 Exploration drill core assays ……………………………… 18
3.5.2 Chemical assays of rock chips ……………………………… 18
4 RESULTS ……………………………………………………………… 19
4.1 Pre-definition of ore types ………………………………...……………. 19
4.2 Mineralogy of in situ ore ……………………………………………… 21
4.2.1 Ore Type M1a ……………………………………………… 21
4.2.2 Ore Type M1b ……………………………………………… 22
4.2.3 Ore Type M2a ……………………………………………… 23
4.2.4 Ore Type M2b ……………………………………………… 25
4.2.5 Ore Type HM1b ……………………………………………… 26
4.2.6 Ore Type HM2a ……………………………………………… 27
4.2.7 Ore Type HM2b ……………………………………………… 28
4.2.8 Ore Type H1a ……………………………………………… 29
4.2.9 Ore Type H1b ……………………………………………… 30
4.2.10 Ore Type H2a ……………………………………………… 31
4.2.11 Ore Type H2b ……………………………………………… 32
4.2.12 Comparison of ore types ……………………………………… 33
4.3 Geochemistry of in situ ore types ……………………………… 36
4.3.1 Whole-rock chemical assays of drill cores ……………………… 36
4.3.2 Whole-rock geochemistry of rock chips ……………………… 39
4.4 Mineral chemistry of iron oxides ……………………………………… 42
4.4.1 Iron oxides and associated minerals ……………………………… 42
4.4.2 Mineral chemistry of magnetite from Per Geijer ……………… 43
4.4.3 Mineral chemistry of hematite from Per Geijer ……………… 47
4.5 Mineral chemistry of apatite ……………………………………… 51
4.5.1 Apatite and associated minerals ……………………………… 51
4.5.2 Mineral chemistry of apatite from Per Geijer ……………… 53
Chapter B
5 COMMINUTION TESTS ……………………………………………… 58
5.1 Methodology of comminution tests ……………………………………… 59
5.1.1 Sampling for comminution tests ……………………………… 59
5.1.2 Comminution circuit ……………………………………………… 61
5.1.3 Energy consumption calculation ……………………………… 62
5.1.4 SEM – MLA ……………………………………………………… 64
6 MAGNETIC SEPARATION TESTS ……………………………… 65
6.1 Methodology of magnetic separation by Davis magnetic tube ……… 66
6.2 Davis magnetic tube tests for characterization of the Per Geijer ore types 66
6.3 Separation analysis based on the Henry-Reinhard charts .……………... 67
7 RESULTS OF COMMINUTION OF ORE TYPES ……………………… 69
7.1 General characteristics of magnetite-dominated ore types ……………… 69
7.2 General characteristics of hematite-dominated ore types ……………… 72
7.3 General characteristics of magnetite/hematite-mixed ore types ……… 75
7.4 General characteristics of low-grade ore types ……………………… 77
7.5 Mineral liberation characteristics of magnetite-dominated ore types 79
7.6 Mineral liberation characteristics of hematite-dominated ore types 83
7.7 Mineral liberation characteristics of magnetite/hematite-mixed ore types 87
7.8 Mineral liberation characteristics of low-grade ore types ……………… 90
7.9 Total energy consumption of ore types from the Per Geijer deposits 94
8 RESULTS OF MAGNETIC SEPARATION OF ORE TYPES ……… 95
8.1 Magnetic separation of magnetite-dominated ore types ……………… 95
8.2 Magnetic separation of hematite-dominated ore types ……………… 96
8.3 Magnetic separation of magnetite/hematite-mixed ore types ……………… 97
8.4 Magnetic separation of low-grade ore types ……………………………… 98
8.5 Henry-Reinhard charts ……………………………………………… 99
9 DISCUSSION ……………………………………………………… 101
9.1 Mineralogy of the in-situ ore types from the Per Geijer deposits ……… 101
9.2 Geochemistry of the in-situ ore types from the Per Geijer deposits ……… 103
9.3 Mineral chemistry of iron oxides from the Per Geijer deposits ……… 105
9.4 Mineral chemistry of apatite from the Per Geijer deposits ……………… 114
9.5 Comminution of ore types from Per Geijer ……………………… 119
9.6 Magnetic separation of ore types from Per Geijer ……………………… 120
9.7 Issues with process mineralogy of in-situ and grinded ore types ……… 121
10 CONCLUSIONS ……………………………………………………… 128
11 IMPLICATIONS FOR FUTURE WORK ……………………………… 131
12 REFERENCES ……………………………………………………………… 134
|
7 |
Erläuterungen zur Karte 'Mineralische Rohstoffe Erzgebirge-Vogtland/Krushé hory 1:100 000, Karte 2: Metalle, Fluorit/Baryt - Verbreitung und Auswirkungen auf die UmweltHösel, Günter, Tischendorf, Gerhard, Wasternack, Jürgen 04 January 2022 (has links)
Erstmals seit dem 2. Weltkrieg wird mit der Karte eine vollständige Übersicht über die im genannten Raum bebauten oder noch vorhandenen o. g. mineralischen Rohstoffe gegeben. Auf der Karte im Maßstab 1:100.000 kommen Verbreitung, Intensität und Genese dieser Rohstoffe zur Darstellung. Die Karte liegt der Broschüre nicht bei, sondern kann beim Staatsbetrieb Geobasisinformation und Vermessung Sachsen erworben werden.
Redaktionsschluss: 30.11.1996
|
Page generated in 0.0626 seconds