• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semi-groupes de matrices et applications

Mercat, Paul 11 December 2012 (has links) (PDF)
Nous étudions les semi-groupes de matrices avec des points de vue variés qui se re-coupent. Le point de vue de la croissance s'avère relié à un point de vue géométrique : nous avons partiellement généralisé aux semi-groupes un théorème de Patterson-Sullivan-Paulin sur les groupes, qui donne l'égalité entre exposant critique et dimension de Hausdorff de l'ensemble limite. Nous obtenons cela dans le cadre général des semi-groupes d'isométries d'un espace Gromov-hyperbolique, et notre preuve nous a permis d'obtenir également d'autres résultats nouveaux. Le point de vue informatique s'avère également relié à la croissance, puisque la notion de semi-groupe fortement automatique, que nous avons introduit, permet de calculer les exposants critiques exactes de semi-groupes de développement en base β. Et ce point de vue donne également beaucoup d'autres informations sur ces semi-groupes. Cette notion de croissance s'avère aussi reliée à des conjectures sur les fractions continues telles que celle de Zaremba. Et c'est en étudiant certains semi-groupes de matrices que nous avons pu démontrer des résultats sur les fractions continues périodiques bornées qui permettent de petites avancées dans la résolution d'une conjecture de McMullen.
2

Semi-groupes de matrices et applications / Matrix semigroups and applications

Mercat, Paul 11 December 2012 (has links)
Nous étudions les semi-groupes de matrices avec des points de vue variés qui se re-coupent. Le point de vue de la croissance s’avère relié à un point de vue géométrique : nous avons partiellement généralisé aux semi-groupes un théorème de Patterson-Sullivan-Paulin sur les groupes, qui donne l’égalité entre exposant critique et dimension de Hausdorff de l’ensemble limite. Nous obtenons cela dans le cadre général des semi-groupes d’isométries d’un espace Gromov-hyperbolique, et notre preuve nous a permis d’obtenir également d’autres résultats nouveaux. Le point de vue informatique s’avère également relié à la croissance, puisque la notion de semi-groupe fortement automatique, que nous avons introduit, permet de calculer les exposants critiques exactes de semi-groupes de développement en base β. Et ce point de vue donne également beaucoup d’autres informations sur ces semi-groupes. Cette notion de croissance s’avère aussi reliée à des conjectures sur les fractions continues telles que celle de Zaremba. Et c’est en étudiant certains semi-groupes de matrices que nous avons pu démontrer des résultats sur les fractions continues périodiques bornées qui permettent de petites avancées dans la résolution d'une conjecture de McMullen. / We study matrix semigroups with different point of view that overlaps. The growth point of view seems to be related with the geometric point of view : we partially generalize to the semigroups a theorem on groups of Patterson-Sullivan-Paulin, that give the equality between the critical exponent and the Hausdorff dimension of the limit set. We obtain this in the general framework of isometries of a Gromov-hyperbolic space, and our proof give also others new results. The computer science point of view is also related to the growth, since we obtain a way to calculate exact values of critical exponents of somes β-adic development semigroups, from a notion of automatic semigroups that we introduce. Furthermore this point of view give a lot of information on these semigroups. This notion of growth shows to be also related to conjectures on continued fractions like Zaremba’s one. And by studing some matrix semigroups we were able to prove some results on bounded periodic continued fractions, doing a little step in the resolution of a conjecture of McMullen.
3

Prescription de courbures sur l'espace hyperbolique

Delay, Erwann 20 February 1998 (has links) (PDF)
La thèse se compose de deux parties.<br /><br />Première partie :<br />thème de la courbure scalaire conforme sur l'espace hyperbolique. Nous<br />apportons ici une étude fine du comportement asymptotique en toute<br />dimension. Nous traitons toujours d'équations semi-linéaires<br />générales, avant d'appliquer nos résultats au cas particulier de<br />l'équation géométrique.<br /><br />Deuxième partie :<br />thème de la courbure de Ricci sur l'espace hyperbolique.<br />Nous obtenons le résultat suivant.<br />Sur la boule unité de $\R^n$, on considère la métrique<br />hyperbolique standard $H_0$, dont la courbure de Ricci vaut $R_0$<br />et la courbure de Riemann-Christoffel vaut ${\cal R}_0$.<br />Nous montrons qu'en dimension $n\geq10$, pour<br />tout tenseur symétrique $R$ voisin<br />de $R_0$, il existe une unique métrique $H$ voisine de $H_0$<br />dont la courbure de Ricci vaut $R$.<br />Nous en déduisons, dans le cadre $C^\infty$, que l'image<br />de l'opérateur de Riemann-Christoffel est une sous-variété<br />au voisinage de ${\cal R}_0$.<br />Nous traitons aussi dans cette partie de la courbure de Ricci contravariante<br />en toute dimension, du problème de Dirichlet à l'infini en dimension 2,<br />et de quelques obstructions.
4

Variétés projectives convexes de volume fini / Convex projective manifolds of finite volume

Marseglia, Stéphane 13 July 2017 (has links)
Cette thèse est consacrée à l'étude des variétés projectives strictement convexes de volume fini. Une telle variété est le quotient G\U d'un ouvert proprement convexe U de l'espace projectif réel RP^(n-1) par un sous-groupe discret sans torsion G de SLn(R) qui préserve U. Dans un premier temps, on étudie l'adhérence de Zariski des holonomies de variétés projectives strictement convexes de volume fini. Pour une telle variété G\U, on montre que, soit G est Zariski-dense dans SLn(R), soit l'adhérence de Zariski de G est conjuguée à SO(1,n-1). On s'intéresse ensuite à l'espace des modules des structures projectives strictement convexes de volume fini. On montre en particulier que cet espace des modules est un fermé de l'espace des représentations. / In this thesis, we study strictly convex projective manifolds of finite volume. Such a manifold is the quotient G\U of a properly convex open subset U of the real projective space RP^(n-1) by a discrete torsionfree subgroup G of SLn(R) preserving U. We study the Zariski closure of holonomies of convex projective manifolds of finite volume. For such manifolds G\U, we show that either the Zariski closure of G is SLn(R) or it is a conjugate of SO(1,n-1).We also focuss on the moduli space of strictly convex projective structures of finite volume. We show that this moduli space is a closed set of the representation space.

Page generated in 0.0482 seconds