• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 1
  • Tagged with
  • 15
  • 8
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Planification de mouvement pour mobile non-holonome en espace de travail dynamique

Fraichard, Thierry 22 April 1992 (has links) (PDF)
Le probleme aborde dans ce mémoire est celui de la planification des mouvements d'un mobile a soumis a des contraintes cinématiques et dynamiques et se déplaçant dans un espace de travail dynamique w. Ce mémoire défend la thèse selon laquelle le probleme considère, connu pour être complexe, peut entre résolu de façon efficace lorsqu'il existe une structuration de w naturelle pour a, i.e. Lorsqu'il est possible de structurer w en un ensemble de zones libres a l'intérieur desquelles a peut se déplacer. Dans ce cas, le probleme peut être aborde suivant deux directions complémentaires: 1) la planification de chemin qui prend en compte les contraintes cinématiques de a et les obstacles fixes de w, et; 2) la planification de trajectoire qui prend en compte les contraintes dynamiques de a et les obstacles mobiles de w. Ce mémoire traite le cas d'une voiture dans le réseau routier. Les zones libres sont alors définies par les voies de circulation. A est soumis a une contrainte cinématique non-holonome qui l'oblige a se déplacer dans une direction perpendiculaire a l'axe de ses roues. De plus, le rayon de braquage, l'accélération et la vitesse de a sont limites. Nous commençons par présenter deux techniques de resolution propres a chacune des deux planifications mentionnées ci-dessus et bien adaptées au contexte dans lequel nous nous plaçons. Puis, nous montrons comment intégrer ces deux techniques au sein d'un système de planification de mouvement qui permet de résoudre efficacement le probleme considéré
2

Utilisation des réseaux de neurones artificiels pour la commande d'un véhicule autonome

Gauthier, Eric 25 January 1999 (has links) (PDF)
Le sujet de cette thèse se situe à l'intersection des domaines de la robotique mobile et des réseaux de neurones artificiels (RNA). Notre objectif est d'étudier les solutions que peuvent apporter les techniques connexionnistes aux problèmes particuliers posés par la commande automatique d'un robot de type voiture. Ce mémoire se compose de deux parties principales. La première d'entre elles traite des aspects fondamentaux de la commande d'un robot mobile et de l'utilisation des réseaux de neurones artificiels pour la commande de systèmes complexes. Cette première étude nous permet de mettre en évidence les différents points sur lesquels les réseaux de neurones peuvent jouer un rôle dans une architecture de commande conférant une véritable autonomie de mouvements au véhicule, tout en respectant les contraintes de robustesse et de rapidité de réaction induites par l'utilisation d'un robot de la taille et de la vitesse d'une voiture. Nous proposons dans la deuxième partie du mémoire plusieurs contrôleurs permettant d'accroître progressivement l'autonomie du robot. Nous nous intéressons tout d'abord à une tâche simple consistant uniquement à asservir le robot sur une trajectoire de référence issue d'un planificateur. Notre approche autorise une adaptation continue du système face à d'éventuels changements des paramètres du robot ou de son environnement. Afin de permettre la réalisation de manoeuvres sans consignes extérieures, nous proposons également une méthodologie pour la réalisation de contrôleurs basés sur l'utilisation des capteurs externes du véhicule. Notre appoche utilise un modèle alliant des caractéristiques issues de la logique floue et des RNA. Enfin nous montrons comment des tâches complexes peuvent être réalisées à partir de l'enchaînement de plusieurs contrôleurs simples. Notre réalisation du système de sélection de ces contrôleurs, utilisant un RNA récurrent, possède des capacités de robustesse et autorise des réactions très rapides face à l'ensemble des événements extérieurs qui doivent pouvoir être pris en compte.
3

Architecture de contrôle distribuée pour robot mobile autonome : principes, conception et applications

Fleury, Sara 15 February 1996 (has links) (PDF)
Un robot mobile autonome doit réaliser des tâches non répétitives dans un environnement imparfaitement connu et non-coopératif, voire hostile. Dans ce contexte les missions attribuées au robot ne peuvent être définies que de façon abstraite et peu détaillée, et le robot doit être doté de moyens pour les interpréter, appréhender l'environnement, décider des actions adéquates et réagir aux événements asynchrones. Afin de concilier décision et réaction, l'architecture de contrôle proposée, c'est-à-dire la manière dont sont organisées les composantes logicielles du robot, comporte deux niveaux hiérarchiques : les niveaux décisionnel et fonctionnel. Ce second niveau, objet principal de la thèse, fournit l'ensemble des capacités opératoires du système (perception, modélisation, mouvements et actions). La première partie du mémoire présente l'architecture globale et fournit un état de l'art et une analyse critique focalisée sur l'organisation des systèmes réactifs. La seconde partie explicite les conditions requises au niveau de la couche fonctionnelle pour satisfaire l'autonomie, la réactivité et la programmabilité du robot. Ces caractéristiques, associées à la grande diversité et aux contraintes temporelles des fonctions opératoires, ont conduit à une structuration en modules. La formalisation structurelle, comportementale et fonctionnelle des modules a permis en particulier de concevoir des méthodes générales d'intégration de fonctions. Les fonctions ainsi encapsulées dans les modules composent un ensemble de services homogènes, réactifs et observables à la disposition du niveau décisionnel qui accomplit les tâches du robot en les combinant dynamiquement en un arbre d'activités. Les modules sont décrits et produits au moyen d'un langage de spécification associé à un générateur automatique nommé GenoM. La dernière partie présente trois intégrations complètes. La première concerne Hilare, un robot expérimental d'intérieur é quipé de nombreux capteurs et fonctionnalités. Des méthodes originales de localisation et de contrôle de déplacement pour véhicule non-holonome sont détaillées. La seconde porte sur la navigation en milieu naturel du robot tout terrain ADAM. La dernière, relative à la coopération multi-robots, a conduit à une simulation réaliste d'une quinzaine de robots (sous UNIX) et à une expérimentation réelle avec trois robots Hilare (sous VxWorks).
4

PLANIFICATION DE MOUVEMENTS POUR UN ROBOT MOBILE AUTONOME TOUT-TERRAIN : UNE APPROCHE PAR UTILISATION DES MODELES PHYSIQUES /

Cherif, Moëz LAUGIER, C.. January 1995 (has links)
Thèse de doctorat : SCIENCES APPLIQUEES : INP GRENOBLE : 1995. / 1 microfiche de 392 images ; 105x148 mm. Microed. du texte dactylogr. 1995INPG0116. 83 REF.
5

Contributions to the geometry of Lorentzian manifolds with special holonomy

Schliebner, Daniel 02 April 2015 (has links)
In dieser Arbeit studieren wir Lorentz-Mannigfaltigkeiten mit spezieller Holonomie, d.h. ihre Holonomiedarstellung wirkt schwach-irreduzibel aber nicht irreduzibel. Aufgrund der schwachen Irreduzibilität lässt die Darstellung einen ausgearteten Unterraum invariant und damit also auch eine lichtartige Linie. Geometrisch hat dies zur Folge, dass wir zwei parallele Unterbündel (die Linie und ihr orthogonales Komplement) des Tangentialbündels erhalten. Diese Arbeit nutzt diese und weitere Objekte um zu beweisen, dass kompakte Lorentzmannigfaltigkeiten mit Abelscher Holonomie geodätisch vollständig sind. Zudem werden Lorentzmannigfaltigkeiten mit spezieller Holonomie und nicht-negativer Ricci-Krümung auf den Blättern der Blätterung, induziert durch das orthogonale Komplement der parellelen Linie, und maximaler erster Bettizahl untersucht. Schließlich werden vollständige Ricci-flache Lorentzmannigfaltigkeiten mit vorgegebener voller Holonomie konstruiert. / In the present thesis we study dimensional Lorentzian manifolds with special holonomy, i.e. such that their holonomy representation acts indecomposably but non-irreducibly. Being indecomposable, their holonomy group leaves invariant a degenerate subspace and thus a light-like line. Geometrically, this means that, since being holonomy invariant, this line gives rise to parallel subbundles of the tangent bundle. The thesis uses these and other objects to prove that Lorentian manifolds with Abelian holonomy are geodesically complete. Moreover, we study Lorentzian manifolds with special holonomy and non-negative Ricci curvature on the leaves of the foliation induced by the orthogonal complement of the parallel light-like line whose first Betti number is maximal. Finally, we provide examples of geodesically complete and Ricci-flat Lorentzian manifolds with special holonomy and prescribed full holonomy group.
6

Sur l'holonomie des variétés pseudo-riemanniennes

Boubel, Charles 03 May 2000 (has links) (PDF)
Les trois chapitres, relativement indépendants, de la thèse étudient des variétés pseudo-riemanniennes (variétés munies d'une métrique non-dégénérée mais non définie) dont l'holonomie restreinte est indécomposable mais stabilise des sous-espaces totalement isotropes. Chapitre 1. Une variété riemanienne de courbure de Ricci parallèle est localement (globalement si elle est complète et simplement connexe) un produit de variétés d'Einstein. Cela résulte de la positivité de la métrique et n'est plus vrai dans le cas pseudo-riemannien. Cependant, en utilisant les propriétés classiques de l'holonomie ainsi qu'un travail de Klingenberg de 1954 sur les paires de formes bilinéaires symétriques le chapitre 1 montre un résultat proche : décomposition en produit de variétés d'Einstein et de deux autres types, <> et < pour les paires de formes réflexives, voir pp.96-100 de la thèse. Chapitre 3. Le plus significatif, il construit, sur une certaine classe de variétés pseudo-riemanniennes réductibles, indécomposables sous l'action de leur holonomie restreinte, des coordonnées privilégiées, <> en un sens qu'il précise (th. 1 p. 167). Ces coordonnées sont un outil pour une première compréhension de la géométrie locale, complexe, de ces variétés. Elles permettent en particulier de paramétrer l'espace des germes de métriques lorentziennes correspondant à chacun des quatre types d'holonomie lorentzienne possibles donnés par A. Ikemakhen et L. Bérard Bergery. (voir pp. 204--205 et 211).
7

Étude du modèle des variétés roulantes et de sa commandabilité / Study of the Rolling Manifolds Model and of its Controllability

Kokkonen, Petri 27 November 2012 (has links)
Nous étudions la commandabilité du système de contrôle décrivant le procédé de roulement, sans glissement ni pivotement, de deux variétés riemanniennes n-dimensionnelles, l'une sur l'autre. Ce modèle est étroitement associé aux concepts de développement et d'holonomie des variétés, et il se généralise au cas de deux variétés affines. Les contributions principales sont celles données dans quatre articles, attachés à la fin de la thèse.Le premier d'entre eux «Rolling manifolds and Controllability : the 3D case»traite le cas où les deux variétés sont 3-dimensionelles. Nous donnons alors, la liste des cas possibles pour lesquelles le système n'est pas commandable.Dans le deuxième papier «Rolling manifolds on space forms», l'une des deux variétés est supposée être de courbure constante. On peut alors réduire l'étude de commandabilité à l'étude du groupe d'holonomie d'une certaine connexion vectorielle et on démontre, par exemple, que si la variété à courbure constante est une sphère n-dimensionelle et si ce groupe de l'holonomie n'agit pas transitivement, alors l'autre variété est en fait isométrique à la sphère.Le troisième article «A Characterization of Isometries between Riemannian Manifolds by using Development along Geodesic Triangles» décrit, en utilisant le procédé de roulement (ou développement) le long des lacets, une version alternative du théorème de Cartan-Ambrose-Hicks, qui caractérise, entre autres, les isométries riemanniennes. Plus précisément, on prouve que si on part d'une certaine orientation initiale, et si on ne roule que le long des lacets basés au point initial (associé à cette orientation), alors les deux variétés sont isométriques si (et seulement si) les chemins tracés par le procédé de roulement sur l'autre variété, sont tous des lacets.Finalement, le quatrième article «Rolling Manifolds without Spinning» étudie le procédé de roulement et sa commandabilité dans le cas où l'on ne peut pas pivoter. On caractérise alors les structures de toutes les orbites possibles en termes des groupes d'holonomie des variétés en question. On montre aussi qu'il n'existe aucune structure de fibré principal sur l'espace d'état tel que la distribution associée à ce modèle devienne une distribution principale, ce qui est à comparer notamment aux résultats du deuxième article.Par ailleurs, dans la troisième partie de cette thèse, nous construisons soigneusement le modèle de roulement dans le cadre plus général des variétés affines, ainsi que dans celui des variétés riemanniennes de dimensiondifférente. / We study the controllability of the control system describing the rolling motion, without slipping nor spinning, of two n-dimensional Riemannian manifolds, one against the other.This model is closely related to the concepts of development and holonomy of the manifolds, and it generalizes to the case of affine manifolds.The main contributions are those given in four articles attached to the the thesis.First of them "Rolling manifolds and Controllability: the 3D case"deal with the case where the two manifolds are 3-dimensional. We give the listof all the possible cases for which the system is not controllable.In the second paper "Rolling manifolds on space forms"one of the manifolds is assumed to have constant curvature.We can then reduce the study of controllability to the study of the holonomy groupof a certain vector bundle connection and we show, for example, thatif the manifold with the constant curvature is an n-sphere and ifthis holonomy group does not act transitively,then the other manifold is in fact isometric to the sphere.The third paper "A Characterization of Isometries between Riemannian Manifolds by using Development along Geodesic Triangles"describes, by using the rolling motion (or development) along the loops,an alternative version of the Cartan-Ambrose-Hicks Theorem,which characterizes, among others, the Riemannian isometries.More precisely, we prove that if one starts from a certain initial orientation,and if one only rolls along loops based at the initial point (associated to this orientation),then the two manifolds are isometric if (and only if) the pathstraced by the rolling motion on the other manifolds, are all loops.Finally, the fourth paper "Rolling Manifolds without Spinning"studies the rolling motion, and its controllability, when slipping is allowed.We characterize the structure of all the possible orbits in terms of the holonomy groupsof the manifolds in question. It is also shown that there does not exist anyprincipal bundle structure such that the related distribution becomes a principal distribution,a fact that is to be compared especially to the results of the second article.Furthermore, in the third chapter of the thesis, we construct carefully the rolling modelin the more general framework of affine manifolds, as well as that of Riemannian manifolds,of possibly different dimensions.
8

Chemins confinés dans un quadrant

Raschel, Kilian 24 November 2010 (has links) (PDF)
Les thèmes abordés dans le cadre de la thèse "Chemins confinés dans un quadrant" se concentrent autour des marches à petits sauts (c'est-à-dire aux huit plus proches voisins) confinées dans un quart de plan. Tout d'abord, nous considérons le problème combinatoire consistant à compter les chemins du plan qui, se déplaçant selon un ensemble fixé de sauts, restent dans un quadrant. Nous nous focalisons sur les questions suivantes : - expliciter la série génératrice des nombres de chemins partant de l'origine et se terminant en un certain point en un temps fixé ; - analyser la façon dont cette fonction dépend de l'ensemble de sauts, et en particulier étudier sa nature (rationnelle, algébrique, (non) holonome). Ensuite, nous examinons le problème probabiliste des marches aléatoires à valeurs dans un quadrant, homogènes à l'intérieur et tuées au bord. Nous nous intéressons alors aux questions suivantes : - expliciter les probabilités d'absorption en un certain point du bord en un temps fixé, et en particulier les probabilités d'absorption en un certain site du bord ; - trouver l'asymptotique de ces probabilités ; - expliciter les probabilités que le processus se trouve en un certain point intérieur au quadrant en un temps fixé, et les fonctions de Green ; - calculer l'asymptotique précise de ces fonctions de Green le long de toutes les trajectoires ; - obtenir toutes les fonctions harmoniques positives ou nulles ainsi que la compactification de Martin ; - analyser le temps d'absorption sur les axes, et notamment l'asymptotique de sa queue de distribution. Les méthodes que nous utilisons pour répondre aux questions ci-dessus font appel à l'analyse complexe.
9

Reconstruction of deligne classes and cocycles

Demircioglu, Aydin January 2007 (has links)
In der vorliegenden Arbeit verallgemeinern wir im Wesentlichen zwei Theoreme von Mackaay-Picken und Picken (2002, 2004). Im ihrem Artikel zeigen Mackaay und Picken,dass es eine bijektive Korrespodenz zwischen Deligne 2-Klassen $xi in check{H}^2(M, mathcal{D}^2)$ und Holonomie Abbildungen von der zweiten dünnen Homotopiegruppe $pi_2^2(M)$ in die abelsche Gruppe $U(1)$ gibt. Im zweiten Artikel wird eine Verallgemeinerung dieses Theorems bewiesen: Picken zeigt, dass es eine Bijektion gibt zwischen Deligne 2-Kozykeln und gewissen 2-dimensionalen topologischen Quantenfeldtheorien. In dieser Arbeit zeigen wir, dass diese beiden Theoreme in allen Dimensionen gelten.Wir betrachten zunächst den Holonomie Fall und können mittels simplizialen Methoden nachweisen, dass die Gruppe der glatten Deligne $d$-Klassen isomorph ist zu der Gruppe der glatten Holonomie Abbildungen von der $d$-ten dünnen Homotopiegruppe $pi_d^d(M)$ nach $U(1)$, sofern $M$ eine $(d-1)$-zusammenhängende Mannigfaltigkeit ist. Wir vergleichen dieses Resultat mit einem Satz von Gajer (1999). Gajer zeigte, dass jede Deligne $d$-Klasse durch eine andere Klasse von Holonomie-Abbildungen rekonstruiert werden kann, die aber nicht nur Holonomien entlang von Sphären, sondern auch entlang von allgemeinen $d$-Mannigfaltigkeiten in $M$ enthält. Dieser Zugang benötigt dann aber nicht, dass $M$ hoch-zusammenhängend ist. Wir zeigen, dass im Falle von flachen Deligne $d$-Klassen unser Rekonstruktionstheorem sich von Gajers unterscheidet, sofern $M$ nicht als $(d-1)$, sondern nur als $(d-2)$-zusammenhängend angenommen wird. Stiefel Mannigfaltigkeiten besitzen genau diese Eigenschaft, und wendet man unser Theorem auf diese an und vergleicht das Resultat mit dem von Gajer, so zeigt sich, dass es zuviele Deligne Klassen rekonstruiert. Dies bedeutet, dass unser Rekonstruktionsthreorem ohne die Zusatzbedingungen an die Mannigfaltigkeit M nicht auskommt, d.h. unsere Rekonstruktion benötigt zwar weniger Informationen über die Holonomie entlang von d-dimensionalen Mannigfaltigkeiten, aber dafür muss M auch $(d-1)$-zusammenhängend angenommen werden. Wir zeigen dann, dass auch das zweite Theorem verallgemeinert werden kann: Indem wir das Konzept einer Picken topologischen Quantenfeldtheorie in beliebigen Dimensionen einführen, können wir nachweisen, dass jeder Deligne $d$-Kozykel eine solche $d$-dimensionale Feldtheorie mit zwei besonderen Eigenschaften, der dünnen Invarianz und der Glattheit, induziert. Wir beweisen, dass jede $d$-dimensionale topologische Quantenfeldtheorie nach Picken mit diesen zwei Eigenschaften auch eine Deligne $d$-Klasse definiert und prüfen nach, dass diese Konstruktion sowohl surjektiv als auch injektiv ist. Demzufolge sind beide Gruppen isomorph. / In this thesis we mainly generalize two theorems from Mackaay-Picken and Picken (2002, 2004). In the first paper, Mackaay and Picken show that there is a bijective correspondence between Deligne 2-classes $xi in check{H}^2(M,mathcal{D}^2)$ and holonomy maps from the second thin-homotopy group $pi_2^2(M)$ to $U(1)$. In the second one, a generalization of this theorem to manifolds with boundaries is given: Picken shows that there is a bijection between Deligne 2-cocycles and a certain variant of 2-dimensional topological quantum field theories. In this thesis we show that these two theorems hold in every dimension. We consider first the holonomy case, and by using simplicial methods we can prove that the group of smooth Deligne $d$-classes is isomorphic to the group of smooth holonomy maps from the $d^{th}$ thin-homotopy group $pi_d^d(M)$ to $U(1)$, if $M$ is $(d-1)$-connected. We contrast this with a result of Gajer (1999). Gajer showed that Deligne $d$-classes can be reconstructed by a different class of holonomy maps, which not only include holonomies along spheres, but also along general $d$-manifolds in $M$. This approach does not require the manifold $M$ to be $(d-1)$-connected. We show that in the case of flat Deligne $d$-classes, our result differs from Gajers, if $M$ is not $(d-1)$-connected, but only $(d-2)$-connected. Stiefel manifolds do have this property, and if one applies our theorem to these and compare the result with that of Gajers theorem, it is revealed that our theorem reconstructs too many Deligne classes. This means, that our reconstruction theorem cannot live without the extra assumption on the manifold $M$, that is our reconstruction needs less informations about the holonomy of $d$-manifolds in $M$ at the price of assuming $M$ to be $(d-1)$-connected. We continue to show, that also the second theorem can be generalized: By introducing the concept of Picken-type topological quantum field theory in arbitrary dimensions, we can show that every Deligne $d$-cocycle induces such a $d$-dimensional field theory with two special properties, namely thin-invariance and smoothness. We show that any $d$-dimensional topological quantum field theory with these two properties gives rise to a Deligne $d$-cocycle and verify that this construction is surjective and injective, that is both groups are isomorphic.
10

Etude du modèle des variétés roulantes et de sa commandabilité.

Kokkonen, Petri 27 November 2012 (has links) (PDF)
Nous étudions la commandabilité du système de contrôle décrivant le procédé de roulement, sans glissement ni pivotement, de deux variétés riemanniennes n-dimensionnelles, l'une sur l'autre. Ce modèle est étroitement associé aux concepts de développement et d'holonomie des variétés, et il se généralise au cas de deux variétés affines. Les contributions principales sont celles données dans quatre articles, attachés à la fin de la thèse.Le premier d'entre eux "Rolling manifolds and Controllability : the 3D case"traite le cas où les deux variétés sont 3-dimensionelles. Nous donnons alors, la liste des cas possibles pour lesquelles le système n'est pas commandable.Dans le deuxième papier "Rolling manifolds on space forms", l'une des deux variétés est supposée être de courbure constante. On peut alors réduire l'étude de commandabilité à l'étude du groupe d'holonomie d'une certaine connexion vectorielle et on démontre, par exemple, que si la variété à courbure constante est une sphère n-dimensionelle et si ce groupe de l'holonomie n'agit pas transitivement, alors l'autre variété est en fait isométrique à la sphère.Le troisième article "A Characterization of Isometries between Riemannian Manifolds by using Development along Geodesic Triangles" décrit, en utilisant le procédé de roulement (ou développement) le long des lacets, une version alternative du théorème de Cartan-Ambrose-Hicks, qui caractérise, entre autres, les isométries riemanniennes. Plus précisément, on prouve que si on part d'une certaine orientation initiale, et si on ne roule que le long des lacets basés au point initial (associé à cette orientation), alors les deux variétés sont isométriques si (et seulement si) les chemins tracés par le procédé de roulement sur l'autre variété, sont tous des lacets.Finalement, le quatrième article "Rolling Manifolds without Spinning" étudie le procédé de roulement et sa commandabilité dans le cas où l'on ne peut pas pivoter. On caractérise alors les structures de toutes les orbites possibles en termes des groupes d'holonomie des variétés en question. On montre aussi qu'il n'existe aucune structure de fibré principal sur l'espace d'état tel que la distribution associée à ce modèle devienne une distribution principale, ce qui est à comparer notamment aux résultats du deuxième article.Par ailleurs, dans la troisième partie de cette thèse, nous construisons soigneusement le modèle de roulement dans le cadre plus général des variétés affines, ainsi que dans celui des variétés riemanniennes de dimensiondifférente.

Page generated in 0.046 seconds