• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 64
  • 19
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 199
  • 64
  • 53
  • 41
  • 39
  • 29
  • 26
  • 24
  • 23
  • 20
  • 19
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Evaluation of Coal Surface Modification to Improve Coal-Plastic Composite Strength

Chirume, Clive T. 01 June 2020 (has links)
No description available.
112

Novel Pretreatment Methods to Improve the Properties of Pyrolysis Oil Followed by Production of Biofuels

Tanneru, Sathish Kumar 15 August 2014 (has links)
Production of renewable fuels is of growing interest due to the ongoing concerns associated with combustion of fossil fuel contributing to global warming. Biomass-derived bio-oil is a potential alternative replacement for conventional fuels. But negative properties such as lower energy density, higher water content and acidity prevent the direct use of bio-oil as a fuel. It is universally agreed that for production of a viable fuel bio-oils must be significantly upgraded. Present upgrading techniques, such as hydrodeoxygenation and esterification consume high amounts of expensive hydrogen or large volumes of alcohols, respectively. Production of low yields continues to be a challenge for hydrodeoxygenation. Therefore, development of more efficient upgrading methods would be desirable. The current research was divided into two parts: in the first part the raw bio-oil was pretreated prior to upgrading to reduce coke formation and catalyst deactivation during upgrading. In the second part pretreated bio-oils were further upgraded by several techniques. The second chapter describes application of an olefination process to raw bio-oil to produce a boiler fuel. In the third chapter, raw bio-oil was pretreated by novel oxidation pretreatment to convert bio-oil aldehydes to carboxylic acids. Aldehydes lead to coke formation and their conversion to carboxylic acids circumvents this issue. Following oxidation pretreatment to raw bio-oil acid anhydride pretreatment was applied to reduce water content which leads to catalyst deactivation during upgrading. The fourth chapter tests esterification of pretreated bio-oil by oxidation to produce boiler fuel with relatively high HHV. The fifth chapter discusses hydrodeoxygenation of oxidized bio-oil produced by oxidation to increase hydrocarbons yield and reduced charring during hydrodeoxygenation. The sixth chapter describes application of catalytic deoxygenation of pretreated bio-oil by oxidation in the presence of pressurized syngas to produce a liquid hydrocarbon mixture. In the seventh chapter we tested direct hydrocracking of pretreated bi-oil by oxidation to produce a liquid hydrocarbon mixture. The end products were analyzed by following the ASTM methods for HHV, water content, viscosity, density, acid value, elemental analysis. Best performing fuels based on high HHV and low acid value were analyzed by FTIR, GC-MS, DHA, 1HNMR and simulated distillation.
113

Synthesis of 4'-Ester Resveratrol Analogues, Chromium Trioxide Oxidation of Terpenes, and Synthesis of Mimics of (-)-Englerin A

Acerson, Mark Jeffrey 01 August 2014 (has links) (PDF)
4’ -ester analogues of resveratrol were synthesized using reaction conditions developed to produce mono-ester products in the presence of two other unprotected phenols. Basic conditions were employed to deprotonate the most acidic 4’ phenol followed by addition of anhydrides or acid chlorides to give the ester product. The reaction favored 4’-ester formation in polar aprotic solvents with DMSO being the optimal solvent. (—)-Englerin A is a guaiane-type sesquiterpene containing two ester side chains. Mimics of (—)-englerin A were proposed that retained the ester side chains while replacing the non-polar core with less complicated structures. These proposed mimic cores would maintain the three-dimensional positioning of the esters which are responsible for the anti-cancer activity of (—)-englerin A. Three mimics were synthesized using the bicyclic terpenes borneol and fenchol. Installation of the second ester on the terpene core was accomplished throught the development and optimization of a unique methylene oxidation using chromium trioxide in glacial acetic acid. These mimics were screened against two kidney cancer cell lines. The compounds were shown to have IC50 (inhibitory concentration for 50 % of cells) values above 30 µM.
114

Methyl lactate synthesis using batch reactive distillation: Operational challenges and strategy for enhanced performance

Aqar, D.Y., Rahmanian, Nejat, Mujtaba, Iqbal M. 13 December 2015 (has links)
Yes / Batch reactive distillation is well known for improved conversion and separation of desired reaction products. However, for a number of reactions, the distillation can separate the reactants depending on their boiling points of them and thus not only reduces the benefit of the reactive distillation but also offers operational challenges for keeping the reactants together. Methyl lactate (ML) synthesis via the esterification of lactic acid (LA) with methanol in a reactive distillation falls into this category and perhaps that is why this process has not been explored in the past. The boiling points of the reactants (LA, methanol) are about 490 K and 337 K while those of the products (ML, water) are 417 K and 373 K respectively. Clearly in a conventional reactive distillation (batch or continuous) methanol will be separated from the LA and will reduce the conversion of LA to ML significantly. Here, first the limitations of the use of conventional batch distillation column (CBD) for the synthesis of ML is investigated in detail and a semi-batch reactive distillation (SBD) configuration is studied in detail where LA is the limiting reactant and methanol is continuously fed in excess in the reboiler allowing the reactants to be together for a longer period. However, this poses an operational challenge that the column has to be carefully controlled to avoid overflow of the reboiler at any time of the operation. In this work, the performance of SBD for the synthesis of ML is evaluated using model based optimization in which operational constraints are embedded. The results clearly demonstrate the viability of the system for the synthesis of ML.
115

Synthesis and Biological Evaluation of Open-Chain Epothilones

Fedorka, Sara R. 04 September 2012 (has links)
No description available.
116

Preparation of resistant starch with heat moisture treatment, acid modification, enzymatic modification, and epoxidation methods

You, Sangwon January 2018 (has links)
The main objectives of this study were to develop an effective process to produce modified pea starch with enhanced enzyme resistance property (RS) for food applications. The work compares a non-chemical method (heat moisture treatment) versus a chemical method (crosslinking). One type of commercial pea starch (Nutri-Pea) was used exclusively as the raw material in this study. A number of methods were used to characterize the properties of the modified pea starches: water solubility index (WSI), titration (conversion, iodine value), intrinsic viscosity, infrared spectroscopy (FT-IR), Englyst digestion method, total starch content, and rapid visco analysis (RVA). The effects of heat-moisture treatment on native pea starch and enzyme treated pea starch were examined. The results showed that the produced samples with both native starch and enzyme treated starch exhibited a sharp increase in intrinsic viscosity. Overall, this method was deemed undesirable and not extensively examined past preliminary evaluations. The main focus of the study was on a citric acid crosslinking reaction, chosen for its food compliancy. A temperature of 120 oC was considered ideal for the reaction. FT-IR confirmed the presence of the citric acid incorporation in the starch samples. To improve the extent of reaction, Butanetetracarboxylic acid (BTCA) was considered as a replacement for citric acid and its treated samples showed higher conversion and lower water solubility index than that of the citric acid treated samples. Sodium propionate (NaP) was also considered in the reaction, this time as a food-grade catalyst and found to have minor benefit in cross-linking. BTCA/NaP treated sample reached the highest conversion of the study (96.8±2.3 %) and the lowest WSI (13.1±2.0 %), which increased the RS fraction of the starch from 18% to 32%. The RVA pasting profiles examined were too low to compare due to the high degree of cross-linking. Further improvements to RS were sought by debranching the starch before acid crosslinking. A BTCA/NaP treated sample with enzyme treatment showed a low WSI (31.7±2.3 %) yet substantially higher RS fraction (80.81±0.18 %). Similar to the non-debranched acid modified samples, there were no significant RVA pasting results because of the high cross-linking. Finally, crosslinking with an epoxidized oil was tested to continue looking at food-grade solution yet possible increase the rate of the crosslinking reaction. The results of WSI indicated that this method had little influence on cross-linking, possibly due to the low epoxidation efficiency of vegetable oils, as determined by iodine value. / Thesis / Master of Applied Science (MASc)
117

Sulfate and Hydroxide Supported on Zirconium Oxide Catalysts for Biodiesel Production

Abdoulmoumine, Nourredine 23 July 2010 (has links)
Biodiesel is currently produced by homogeneous catalysis. More recently however, heterogeneous catalysis is being considered as a cheaper alternative to the homogeneous process. In this research project, heterogeneous catalysts of zirconium oxide were produced by impregnation. Zirconium oxide impregnation with sulfuric acid produced acidic solid catalysts. It was determined that impregnation and calcination at 550<sup>o</sup>C (SO₄/ZrO₂-550<sup>o</sup>C) produced the best catalyst for palmitic acid esterification with 10 wt % as the optimum concentration in esterification of palmitic acid. SO₄/ZrO₂-550<sup>o</sup>C was successfully recycled for eight consecutive runs before permanent deactivation. Its sulfur content was 1.04 wt % using SEM-EDS and 2.05 wt % using XPS for characterization. BET surface area was 90.89 m2/g. The reaction mechanism over Brønsted acid (SO₄/ZrO₂-550<sup>o</sup>C) and Lewis acid (Al₂O₃) catalysts obeyed Eley-Rideal kinetics with palmitic acid and methanol adsorbed on the active site respectively. Zirconium oxide was also impregnated with sodium hydroxide to produce basic catalysts. The best catalyst was produced when zirconium oxide was impregnated with 1.5 M NaOH and calcined at 600<sup>o</sup>C. Soybean oil was completely converted to biodiesel with 10 wt % catalyst and 1:6 oil to methanol. A mixture of the base catalyst with 30 wt % SO₄/ZrO₂-550<sup>o</sup>C effectively converted soybean oil containing 5% oleic acid indicating that this mixture could be used for waste oils. The reaction was first order with respect to triglyceride and second order with respect to methanol. The activation energy was 49.35 kJ/mol and the reaction mechanism obeyed Langmuir-Hinshelwood kinetics. / Master of Science
118

Chemical Modification of Cellulose Esters for Oral Drug Delivery

Meng, Xiangtao 20 June 2016 (has links)
Polymer functional groups have critical impacts upon physical, chemical and mechanical properties, and thus affect the specific applications of the polymer. Functionalization of cellulose esters and ethers has been under extensive investigation for applications including drug delivery, cosmetics, food ingredients, and automobile coating. In oral delivery of poorly water-soluble drugs, amorphous solid dispersion (ASD) formulations have been used, prepared by forming miscible blends of polymers and drugs to inhibit crystallization and enhance bioavailability of the drug. The Edgar and Taylor groups have revealed that some cellulose omega-carboxyalkanoates were highly effective as ASD polymers, with the pendant carboxylic acid groups providing both specific polymer-drug interactions and pH-triggered release through swelling of the ionized polymer matrix. While a variety of functional groups such as hydroxyl and amide groups are also of interest, cellulose functionalization has relied heavily on classical methods such as esterification and etherification for appending functional groups. These methods, although they have been very useful, are limited in two respects. First, they typically employ harsh reaction conditions. Secondly, each synthetic pathway is only applicable for one or a narrow group of functionalities due to restrictions imposed by the required reaction conditions. To this end, there is a great impetus to identify novel reactions in cellulose modification that are mild, efficient and ideally modular. In the initial effort to design and synthesize cellulose esters for oral drug delivery, we developed several new methods in cellulose functionalization, which can overcome drawbacks of conventional synthetic pathways, provide novel cellulose derivatives that are otherwise inaccessible, and present a platform for structure-property relationship study. Cellulose omega-hydroxyalkanoates were previously difficult to access as the hydroxyl groups, if not protected, react with carboxylic acid/carbonyl during a typical esterification reaction or ring opening of lactones, producing cellulose-g-polyester and homopolyester. We demonstrated the viability of chemoselective olefin hydroboration-oxidation in the synthesis of cellulose omega]-hydroxyesters in the presence of ester groups. Cellulose esters with terminally olefinic side chains were transformed to the target products by two-step, one-pot hydroboration-oxidation reactions, using 9-borabicyclo[3.3.1]nonane (9-BBN) as hydroboration agent, followed by oxidizing the organoborane intermediate to a primary alcohol using mildly alkaline H2O2. The use of 9-BBN as hydroboration agent and sodium acetate as base catalyst in oxidation successfully avoided cleavage of ester linkages by borane reduction and base catalyzed hydrolysis. With the impetus of modular and efficient synthesis, we introduced olefin cross-metathesis (CM) in polysaccharide functionalization. Using Grubbs type catalyst, cellulose esters with terminally olefinic side chains were reacted with various CM partners including acrylic acid, acrylates and acrylamides to afford families of functionalized cellulose esters. Molar excesses of CM partners were used in order to suppress potential crosslinking caused by self-metathesis between terminally olefinic side chains. Amide CM partners can chelate with the ruthenium catalyst and cause low conversions in conventional solvents such as THF. While the inherent reactivity toward CM and tendency of acrylamides to chelate Ru is influenced by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides. We observed that the CM products are prone to crosslinking during storage, and found that the crosslinking is likely caused by free radical abstraction of gamma-hydrogen of the alpha, beta-unsaturation and subsequent recombination. We further demonstrated successful hydrogenation of these alpha, beta-unsaturated acids, esters, and amides, thereby eliminating the potential for radical-induced crosslinking during storage. The alpha, beta-unsaturation on CM products can cause crosslinking due to gamma-H abstraction and recombination if not reduced immediately after reaction. Instead of eliminating the double bond by hydrogenation, we described a method to make use of these reactive conjugated olefins by post-CM thiol-Michael addition. Under amine catalysis, different CM products and thiols were combined and reacted. Using proper thiols and catalyst, complete conversion can be achieved under mild reaction conditions. The combination of the two modular reactions creates versatile access to multi-functionalized cellulose derivatives. Compared with conventional reactions, these reactions enable click or click-like conjugation of functional groups onto cellulose backbone. The modular profile of the reactions enables clean and informative structure-property relationship studies for ASD. These approaches also provide opportunities for the synthesis of chemically and architecturally diverse cellulosic polymers that are otherwise difficult to access, opening doors for many other applications such as antimicrobial, antifouling, in vivo drug delivery, and bioconjugation. We believe that the cellulose functionalization approaches we pioneered can be expanded to the modification of other polysaccharides and polymers, and that these reactions will become useful tools in the toolbox of polymer/polysaccharide chemists. / Ph. D.
119

Mechanistic Modeling of Biodiesel Production via Heterogeneous Catalysis

Lerkkasemsan, Nuttapol 25 May 2010 (has links)
Biodiesel has emerged as a promising renewable and clean energy alternative to petrodiesel. While biodiesel has traditionally been prepared through homogeneous basic catalysis, heterogeneous acid catalysis has been investigated recently due to its ability to convert cheaper but high free fatty acid content oils such as waste vegetable oil while decreasing production cost. In this work, the esterification of free fatty acid over sulfated zirconia and activated acidic alumina in a batch reactor was considered. The models of the reaction over the catalysts were developed in two parts. First, a kinetic study was performed using a deterministic model to develop a suitable kinetic expression; the related parameters were subsequently estimated by numerical techniques. Second, a stochastic model was developed to further confirm the nature of the reaction at the molecular level. The esterification of palmitic acid obeyed the Eley-Rideal mechanism in which palmitic acid and methanol are adsorbed on the surface for SO?/ZrO?-550°C and AcAl?O? respectively. The coefficients of determination of the deterministic model were 0.98, 0.99 and 0.99 for SO?/ZrO?-550°C at 40, 60 and 80°C respectively and 0.99, 0.98 and 0.96 for AcAl?O? at the same temperature. The deterministic and stochastic models were in good agreement. / Master of Science
120

Processing of Low Rank Coal and Ultrafine Particle Processing by Hydrophobic-Hydrophilic Separation (HHS)

Jain, Riddhika 05 September 2013 (has links)
This thesis pertains to the processing of ultra-fine mineral particles and low rank coal using the hydrophobic--hydrophilic separation (HHS) method. Several explorative experimental tests have been carried out to study the effect of the various physical and chemical parameters on the HHS process. In this study, the HHS process has been employed to upgrade a chalcopyrite ore. A systematic experimental study on the effects of various physical and chemical parameters such as particle size, reagent dosage and reaction time on the separation efficiencies have been performed. For this, a copper rougher concentrate (assaying 15.9 %Cu) was wet ground and treated with a reagent to selectively hydrophobize the copper-bearing mineral (chalcopyrite), leaving the siliceous gangue minerals hydrophilic. The slurry was subjected to a high-shear agitation to selectively agglomerate the chalcopyrite and to leave the siliceous gangue dispersed in aqueous phase. The agglomerates were then separated from dispersed gangue minerals by screening and the agglomerates dispersed in a hydrophobic liquid (n-pentane) to liberate the water trapped in the agglomerates. The chalcopyrite dispersed in the hydrophobic liquid was separated from the medium to obtain a concentrate substantially free of gangue minerals and moisture. The copper recoveries were substantially higher than those obtained by flotation. The HHS process was also tested on ultrafine mono-sized silica beads. The results were superior to those obtained by flotation, particularly with ultrafine particles. The HHS process has also been tested successfully for upgrading subbituminous coals. Low-rank coals are not as hydrophobic as high-rank coals such as bituminous and anthracite coals. In the present work, a low-rank coal from Wyoming was hydrophobized with appropriate reagents and subjected to the HHS in a similar manner as described for processing copper. The results showed that the HHS process reduced the moisture substantially and increased the heating value up to 50% without heating the coal. Laboratory-scale tests conducted under different conditions, e.g., particle size, reagent type, reaction time, and pretreatments, showed promising results. Implementation for the HHS process for upgrading low-rank coals should help reduce CO2 emissions by improving combustion efficiencies. / Master of Science

Page generated in 0.1135 seconds