Spelling suggestions: "subject:"estimado dde erro"" "subject:"estimado dee erro""
1 |
Formulação h-adaptativa do método dos elementos de contorno para elasticidade bidimensional com ênfase na propagação da fratura / H-adaptative formulation of the boundary element method for elastic bidimensional with emphasis in the propagation of the fractureRamos Lovón, Oscar Bayardo 09 June 2006 (has links)
Neste trabalho desenvolveu-se uma formulação adaptativa do método de elementos de contorno (MEC) para a análise de problemas de fratura elástica linear. Foi utilizado o método da colocação para a formulação das equações integrais de deslocamento e de tensão. Para a discretização das equações integrais foram utilizados elementos lineares que possibilitaram a obtenção das expressões exatas das integrais (integração analítica) sobre elementos de contorno e fratura. Para a montagem do sistema de equações algébricas foram utilizadas apenas equações de deslocamento, apenas equações de forças de superfície, ou as duas escritas para nós opostos da fratura levando, portanto ao método dos elementos de contorno dual usualmente empregado na análise de fratura. Para o processo de crescimento da trinca foi desenvolvido um procedimento especial objetivando a correta determinação da direção de crescimento da trinca. Os fatores de intensidade de tensão são calculados por meio da conhecida técnica de correlação de deslocamentos a qual relaciona os deslocamentos atuantes nas faces da fissura. Após a determinação dos fatores de intensidade de tensão é utilizada a teoria da máxima tensão circunferencial para a determinação do ângulo de propagação. O modelo adaptativo empregado é do tipo h onde apenas a sub-divisão dos elementos é feita com base em erros estimados. O erro a ser considerado foi estimado a partir de normas onde se consideraram: a variação aproximada dos deslocamentos, a variação das forças de superfície e a variação da energia de deformação do sistema, calculada com a sua integração sobre o contorno. São apresentados exemplos numéricos para demonstrar a eficiência dos procedimentos propostos. / In this work, an adaptative formulation of the boundary element method is developed to analyze linear elastic fracture problems. The collocation point method was used to formulate the integral equations for the displacements and stresses (or tractions). To discretize the integral equations, linear elements were used to obtain the exact expressions of the integrals over boundary elements and fracture. To construct the linear system of equations were used only displacement equations, traction equations or both of them written for opposite nodes of the fracture, leading to the dual boundary element formulation usually employed in the fracture analyses. For the process of growth of the crack a special procedure was developed aiming at the correct determination of the direction of growth of the crack. The stress intensity factors, to calculate he crack growth angle, are calculated through of correlation displacements technique which relates the displacements actuants in the faces of the crack. The employed adaptative model is the h-type where only the sub-division of the elements is done based on error estimate. The error estimates considered in this work are based on the following norms: displacement, traction and strain energy variations, this last considered from the integration over the boundary. Numerical examples are presented to demonstrate the efficiency of the proposed procedures.
|
2 |
Métodos sem malha e método dos elementos finitos generalizados em análise não-linear de estruturas / Meshless Methods and Generalized Finite Element Method in Structural Nonlinear AnalysisBarros, Felício Bruzzi 27 March 2002 (has links)
O Método dos Elementos Finitos Generalizados, MEFG, compartilha importantes características dos métodos sem malha. As funções de aproximação do MEFG, atreladas aos pontos nodais, são enriquecidas de modo análogo ao refinamento p realizado no Método das Nuvens hp. Por outro lado, por empregar uma malha de elementos para construir as funções partição da unidade, ele também pode ser entendido como uma forma não convencional do Método dos Elementos Finitos. Neste trabalho, ambas as interpretações são consideradas. Os métodos sem malha, particularmente o Método de Galerkin Livre de Elementos e o Método das Nuvens hp, são introduzidos com o propósito de estabelecer os conceitos fundamentais para a descrição do MEFG. Na seqüência, apresentam-se aplicações numéricas em análise linear e evidenciam-se características que tornam o MEFG interessante para a simulação da propagação de descontinuidades. Após discutir os modelos de dano adotados para representar o comportamento não-linear do material, são introduzidos exemplos de aplicação, inicialmente do Método das Nuvens hp e depois do MEFG, na análise de estruturas de concreto. Os resultados obtidos servem de argumento para a implementação de um procedimento p-adaptativo, particularmente com o MEFG. Propõe-se, então a adaptação do Método dos Resíduos em Elementos Equilibrados à formulação do MEFG. Com vistas ao seu emprego em problemas não-lineares, algumas modificações são introduzidas à formulação do estimador. Mostra-se que a medida obtida para representar o erro, apesar de fundamentada em diversas hipóteses nem sempre possíveis de serem satisfeitas, ainda assim viabiliza a análise não-linear p-adaptativa. Ao final, são enumeradas propostas para a aplicação do MEFG em problemas caracterizados pela propagação de defeitos / The Generalized Finite Element Method, GFEM, shares several features with the so called meshless methods. The approximation functions used in the GFEM are associated with nodal points like in meshless methods. In addition, the enrichment of the approximation spaces can be done in the same fashion as in the meshless hp-Cloud method. On the other hand, the partition of unity used in the GFEM is provided by Lagrangian finite element shape functions. Therefore, this method can also be understood as a variation of the Finite Element Method. Indeed, both interpretations of the GFEM are valid and give unique insights into the method. The meshless character of the GFEM justified the investigation of meshless methods in this work. Among them, the Element Free Galerkin Method and the hp-Cloud Method are described aiming to introduce key concepts of the GFEM formulation. Following that, several linear problems are solved using these three methods. Such linear analysis demonstrates several features of the GFEM and its suitability to simulate propagating discontinuities. Next, damage models employed to model the nonlinear behavior of concrete structures are discussed and numerical analysis using the hp-Cloud Method and the GFEM are presented. The results motivate the implementation of a p-adaptive procedure tailored to the GFEM. The technique adopted is the Equilibrated Element Residual Method. The estimator is modified to take into account nonlinear peculiarities of the problems considered. The hypotheses assumed in the definition of the error measure are sometimes violated. Nonetheless, it is shown that the proposed error indicator is effective for the class of p-adaptive nonlinear analysis investigated. Finally, several suggestions are enumerated considering future applications of the GFEM, specially for the simulation of damage and crack propagation
|
3 |
Formulação h-adaptativa do método dos elementos de contorno para elasticidade bidimensional com ênfase na propagação da fratura / H-adaptative formulation of the boundary element method for elastic bidimensional with emphasis in the propagation of the fractureOscar Bayardo Ramos Lovón 09 June 2006 (has links)
Neste trabalho desenvolveu-se uma formulação adaptativa do método de elementos de contorno (MEC) para a análise de problemas de fratura elástica linear. Foi utilizado o método da colocação para a formulação das equações integrais de deslocamento e de tensão. Para a discretização das equações integrais foram utilizados elementos lineares que possibilitaram a obtenção das expressões exatas das integrais (integração analítica) sobre elementos de contorno e fratura. Para a montagem do sistema de equações algébricas foram utilizadas apenas equações de deslocamento, apenas equações de forças de superfície, ou as duas escritas para nós opostos da fratura levando, portanto ao método dos elementos de contorno dual usualmente empregado na análise de fratura. Para o processo de crescimento da trinca foi desenvolvido um procedimento especial objetivando a correta determinação da direção de crescimento da trinca. Os fatores de intensidade de tensão são calculados por meio da conhecida técnica de correlação de deslocamentos a qual relaciona os deslocamentos atuantes nas faces da fissura. Após a determinação dos fatores de intensidade de tensão é utilizada a teoria da máxima tensão circunferencial para a determinação do ângulo de propagação. O modelo adaptativo empregado é do tipo h onde apenas a sub-divisão dos elementos é feita com base em erros estimados. O erro a ser considerado foi estimado a partir de normas onde se consideraram: a variação aproximada dos deslocamentos, a variação das forças de superfície e a variação da energia de deformação do sistema, calculada com a sua integração sobre o contorno. São apresentados exemplos numéricos para demonstrar a eficiência dos procedimentos propostos. / In this work, an adaptative formulation of the boundary element method is developed to analyze linear elastic fracture problems. The collocation point method was used to formulate the integral equations for the displacements and stresses (or tractions). To discretize the integral equations, linear elements were used to obtain the exact expressions of the integrals over boundary elements and fracture. To construct the linear system of equations were used only displacement equations, traction equations or both of them written for opposite nodes of the fracture, leading to the dual boundary element formulation usually employed in the fracture analyses. For the process of growth of the crack a special procedure was developed aiming at the correct determination of the direction of growth of the crack. The stress intensity factors, to calculate he crack growth angle, are calculated through of correlation displacements technique which relates the displacements actuants in the faces of the crack. The employed adaptative model is the h-type where only the sub-division of the elements is done based on error estimate. The error estimates considered in this work are based on the following norms: displacement, traction and strain energy variations, this last considered from the integration over the boundary. Numerical examples are presented to demonstrate the efficiency of the proposed procedures.
|
4 |
Métodos sem malha e método dos elementos finitos generalizados em análise não-linear de estruturas / Meshless Methods and Generalized Finite Element Method in Structural Nonlinear AnalysisFelício Bruzzi Barros 27 March 2002 (has links)
O Método dos Elementos Finitos Generalizados, MEFG, compartilha importantes características dos métodos sem malha. As funções de aproximação do MEFG, atreladas aos pontos nodais, são enriquecidas de modo análogo ao refinamento p realizado no Método das Nuvens hp. Por outro lado, por empregar uma malha de elementos para construir as funções partição da unidade, ele também pode ser entendido como uma forma não convencional do Método dos Elementos Finitos. Neste trabalho, ambas as interpretações são consideradas. Os métodos sem malha, particularmente o Método de Galerkin Livre de Elementos e o Método das Nuvens hp, são introduzidos com o propósito de estabelecer os conceitos fundamentais para a descrição do MEFG. Na seqüência, apresentam-se aplicações numéricas em análise linear e evidenciam-se características que tornam o MEFG interessante para a simulação da propagação de descontinuidades. Após discutir os modelos de dano adotados para representar o comportamento não-linear do material, são introduzidos exemplos de aplicação, inicialmente do Método das Nuvens hp e depois do MEFG, na análise de estruturas de concreto. Os resultados obtidos servem de argumento para a implementação de um procedimento p-adaptativo, particularmente com o MEFG. Propõe-se, então a adaptação do Método dos Resíduos em Elementos Equilibrados à formulação do MEFG. Com vistas ao seu emprego em problemas não-lineares, algumas modificações são introduzidas à formulação do estimador. Mostra-se que a medida obtida para representar o erro, apesar de fundamentada em diversas hipóteses nem sempre possíveis de serem satisfeitas, ainda assim viabiliza a análise não-linear p-adaptativa. Ao final, são enumeradas propostas para a aplicação do MEFG em problemas caracterizados pela propagação de defeitos / The Generalized Finite Element Method, GFEM, shares several features with the so called meshless methods. The approximation functions used in the GFEM are associated with nodal points like in meshless methods. In addition, the enrichment of the approximation spaces can be done in the same fashion as in the meshless hp-Cloud method. On the other hand, the partition of unity used in the GFEM is provided by Lagrangian finite element shape functions. Therefore, this method can also be understood as a variation of the Finite Element Method. Indeed, both interpretations of the GFEM are valid and give unique insights into the method. The meshless character of the GFEM justified the investigation of meshless methods in this work. Among them, the Element Free Galerkin Method and the hp-Cloud Method are described aiming to introduce key concepts of the GFEM formulation. Following that, several linear problems are solved using these three methods. Such linear analysis demonstrates several features of the GFEM and its suitability to simulate propagating discontinuities. Next, damage models employed to model the nonlinear behavior of concrete structures are discussed and numerical analysis using the hp-Cloud Method and the GFEM are presented. The results motivate the implementation of a p-adaptive procedure tailored to the GFEM. The technique adopted is the Equilibrated Element Residual Method. The estimator is modified to take into account nonlinear peculiarities of the problems considered. The hypotheses assumed in the definition of the error measure are sometimes violated. Nonetheless, it is shown that the proposed error indicator is effective for the class of p-adaptive nonlinear analysis investigated. Finally, several suggestions are enumerated considering future applications of the GFEM, specially for the simulation of damage and crack propagation
|
5 |
[en] H-ADAPTATIVE FINITE ELEMENTS IN THE ANALYSIS OF PLANE ELASTIC PROBLEMS / [pt] MÉTODOS DE ELEMENTOS FINITOS H-ADAPTATIVO PARA ANÁLISE DE PROBLEMAS ELÁSTICOS PLANOSWLASMIR CAVALCANTI DE SANTANA 14 July 2015 (has links)
[pt] Apresenta-se neste trabalho a implementação de um método adaptativo de refinamento automático de malhas de Elementos de Finitos. O método aplica-se a problemas planos de elasticidade linear. Elementos triangulares e quadrilaterais (lineares e quadráticos) são utilizados. Estimativas de erro a-posteriori são obtidas através do estimador de erro proposto por Zienkiewicz-Zhu, empregando-se uma técnica de recuperação da solução numérica fornecida pelo MEF (superconvergent patch recovery technique). A metodologia da adaptação da malha emprega o conceito de remalhamento do domínio na forma proposta por Peraire e Zhu para malhas de elementos triangulares e quadrilaterais, respectivamente. Implementa-se um esquema de localização de singularidades presentes no domínio baseado no conceito de concentração da energia de deformação. O uso deste esquema combinado com a metodologia de adaptação permite um processo automático sem intervenção do usuário durante os ciclos de refinamento da malha.
Para demonstrar-se a performance do método são analisados três problemas: uma viga curta em balanço sob carregamento distribuído, uma placa quadrada com furo quadrado e uma placa quadrada com dupla trinca. / [en] This work presentes the theory and the implementation techniques for na automatic h-adaptive procedure of finite elemento mesh refinements. Themetodology is applied to plane problems inlinear elasticity using triangular and quadrilateral shape elements with linear and quadratic lagrangian interpolation functions. Solution errors are a-posteriori evaluated using the Zienkiewicz- Zhu error estimator based on numerical solutions recovered from the finite element method solution – superconvergent patch recovery technique. For the mesh adaptivity of triangular and quadrilateral elements the remeshing concepts proposed by. Peraire and Zhu employed, respectively.
The presence of solution singularities and their intensity is identified throughout the finite cloment mesh from the evaluation of the strain energy concentration, considering the numerical solution obtained. This scheme combined with adaptivity methodology allows for fully automatic procedure of mesh refinement/derefinement at the cycle of solution searching.
Three examples are considered to demonstrate the procedure ability in handling elasticity problems: a cantiliver short beam under transverse distributed loading, a square plate with a middle square hole under inplace traction distributed loading and a double notch square plate under in plane distributed loading.
|
Page generated in 0.1047 seconds