1 |
Restauration de sources radioastronomiques en milieu radioélectrique hostile : Implantation de détecteurs temps réel sur des spectres dynamiques.Dumez-Viou, Cedric 28 September 2007 (has links) (PDF)
L'étude de l'Univers est effectuée de façon quasi-exclusive grâce aux ondes électromagnétiques. La radioastronomie qui étudie la bande radio du spectre est couramment obligée d'observer hors de ses bandes protégées. Il faut donc pouvoir observer des sources dans des bandes où les émissions des systèmes de télécommunication sont souvent proches et donc très puissantes.<br /><br />Les travaux de cette thèse ont eu pour but de développer et d'implanter des méthodes temps réel de traitements numériques visant à atténuer les interférences ambiantes afin de restaurer les radiosources naturelles lors d'observation avec une antenne unique sans informations a priori.<br />Le cœur de ces traitements est basé sur l'estimation de la moyenne d'un échantillon suivant une loi du Khi-2 en présence de points aberrants.<br />Un récepteur numérique multi-instruments à grande dynamique élaboré à la station de radioastronomie de Nançay a servi de banc de test à ces divers algorithmes.<br /><br />La bande corrompue par Iridium est maintenant observable et les sources HI situées dans la bande allouée aux radars sont de nouveau<br />accessibles. Les observations du Soleil et de Jupiter effectuées en<br />bande décamétrique sont maintenant de bien meilleure qualité.<br />Un algorithme a été développé pour configurer le récepteur en tant que détecteur et enregistreur rapide d'évènements très brefs (<100 ms) en milieu parasité. Il est aujourd'hui utilisé pour l'enregistrement de structures fines Joviennes.
|
2 |
Estimation ensembliste par analyse par intervalles Application à la localisation d'un véhiculeKieffer, Michel 18 January 1999 (has links) (PDF)
Dans ce travail, nous développons des outils d'analyse par intervalles pour l'automatique. Nous nous intéressons plus particulièrement à l'identification de paramètres et à l'estimation d'état pour des modèles non-linéaires. Pour l'identification, l'algorithme d'optimisation globale de Hansen fournit un encadrement de tous les vecteurs de paramètres minimisant une fonction coût mettant en jeu les grandeurs mesurées sur un dispositif réel à modéliser et leur pendant prédit par son modèle. Nous montrons que ceci peut mettre en évidence d'éventuels problèmes d'identifiabilité sans étude préalable. Dans l'approche à erreurs bornées, même lorsque des données aberrantes sont présentes, des encadrements intérieur et extérieur des ensembles de vecteurs de paramètres admissibles sont fournis par les algorithmes d'inversion ensembliste par analyse par intervalles. Quand les bornes sur les erreurs ne sont pas connues, une méthode originale évaluant la plus petite borne d'erreur fournissant un ensemble de vecteurs de paramètres admissibles non vide est proposée. Un nouvel algorithme récursif d'estimation d'état garanti est présenté. D'une structure analogue au filtre de Kalman, mais dans un contexte d'erreurs bornées, il fournit à tout instant un ensemble contenant les valeurs de l'état compatibles avec les informations disponibles. Cet algorithme est construit à l'aide d'un algorithme d'inversion ensembliste et d'un algorithme original de calcul d'image directe. Tous deux exploitent la notion de sous-pavages décrits par des arbres binaires, qui permet une description approchée d'ensembles compacts. Ces techniques sont appliquées à la localisation puis au suivi d'un robot à l'intérieur d'une pièce cartographiée. La présence de données aberrantes, comme les ambiguïtés liées aux symétries de la pièce dans laquelle se trouve le robot sont prises en compte sans difficulté. Des ensembles de configurations possibles disjoints peuvent être considérées et leur traitement ne pose aucun problème. En outre, le suivi, même en présence de données aberrantes, est fait en temps réel sur les exemples traités.
|
3 |
Estimation robuste pour des distributions à queue lourde / Robust estimation of heavy-tailed distributionsJoly, Emilien 14 December 2015 (has links)
Nous nous intéressons à estimer la moyenne d'une variable aléatoire de loi à queue lourde. Nous adoptons une approche plus robuste que la moyenne empirique classique communément utilisée. L'objectif est de développer des inégalités de concentration de type sous-gaussien sur l'erreur d'estimation. En d'autres termes, nous cherchons à garantir une forte concentration sous une hypothèse plus faible que la bornitude : une variance finie. Deux estimateurs de la moyenne pour une loi à support réel sont invoqués et leurs résultats de concentration sont rappelés. Plusieurs adaptations en dimension supérieure sont envisagées. L'utilisation appropriée de ces estimateurs nous permet d'introduire une nouvelle technique de minimisation du risque empirique pour des variables aléatoires à queue lourde. Quelques applications de cette technique sont développées. Nous appuyons ces résultats sur des simulations sur des jeux de données simulées. Dans un troisième temps, nous étudions un problème d'estimation multivarié dans le cadre des U-statistiques où les estimateurs précédents offrent, là aussi, une généralisation naturelle d'estimateurs présents dans la littérature. / In this thesis, we are interested in estimating the mean of heavy-tailed random variables. We focus on a robust estimation of the mean approach as an alternative to the classical empirical mean estimation. The goal is to develop sub-Gaussian concentration inequalities for the estimating error. In other words, we seek strong concentration results usually obtained for bounded random variables, in the context where the bounded condition is replaced by a finite variance condition. Two existing estimators of the mean of a real-valued random variable are invoked and their concentration results are recalled. Several new higher dimension adaptations are discussed. Using those estimators, we introduce a new version of empirical risk minimization for heavy-tailed random variables. Some applications are developed. These results are illustrated by simulations on artificial data samples. Lastly, we study the multivariate case in the U-statistics context. A natural generalization of existing estimators is offered, once again, by previous estimators.
|
4 |
Analyse canonique : généralisation, influence et robustesseKhatouri, Abdelaziz January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
5 |
Robust target detection for Hyperspectral Imaging. / Détection robuste de cibles en imagerie Hyperspectrale.Frontera Pons, Joana Maria 10 December 2014 (has links)
L'imagerie hyperspectrale (HSI) repose sur le fait que, pour un matériau donné, la quantité de rayonnement émis varie avec la longueur d'onde. Les capteurs HSI mesurent donc le rayonnement des matériaux au sein de chaque pixel pour un très grand nombre de bandes spectrales contiguës et fournissent des images contenant des informations à la fois spatiale et spectrale. Les méthodes classiques de détection adaptative supposent généralement que le fond est gaussien à vecteur moyenne nul ou connu. Cependant, quand le vecteur moyen est inconnu, comme c'est le cas pour l'image hyperspectrale, il doit être inclus dans le processus de détection. Nous proposons dans ce travail d'étendre les méthodes classiques de détection pour lesquelles la matrice de covariance et le vecteur de moyenne sont tous deux inconnus.Cependant, la distribution statistique multivariée des pixels de l'environnement peut s'éloigner de l'hypothèse gaussienne classiquement utilisée. La classe des distributions elliptiques a été déjà popularisée pour la caractérisation de fond pour l’HSI. Bien que ces modèles non gaussiens aient déjà été exploités dans la modélisation du fond et dans la conception de détecteurs, l'estimation des paramètres (matrice de covariance, vecteur moyenne) est encore généralement effectuée en utilisant des estimateurs conventionnels gaussiens. Dans ce contexte, nous analysons de méthodes d’estimation robuste plus appropriées à ces distributions non-gaussiennes : les M-estimateurs. Ces méthodes de détection couplées à ces nouveaux estimateurs permettent d'une part, d'améliorer les performances de détection dans un environment non-gaussien mais d'autre part de garder les mêmes performances que celles des détecteurs conventionnels dans un environnement gaussien. Elles fournissent ainsi un cadre unifié pour la détection de cibles et la détection d'anomalies pour la HSI. / Hyperspectral imaging (HSI) extends from the fact that for any given material, the amount of emitted radiation varies with wavelength. HSI sensors measure the radiance of the materials within each pixel area at a very large number of contiguous spectral bands and provide image data containing both spatial and spectral information. Classical adaptive detection schemes assume that the background is zero-mean Gaussian or with known mean vector that can be exploited. However, when the mean vector is unknown, as it is the case for hyperspectral imaging, it has to be included in the detection process. We propose in this work an extension of classical detection methods when both covariance matrix and mean vector are unknown.However, the actual multivariate distribution of the background pixels may differ from the generally used Gaussian hypothesis. The class of elliptical distributions has already been popularized for background characterization in HSI. Although these non-Gaussian models have been exploited for background modeling and detection schemes, the parameters estimation (covariance matrix, mean vector) is usually performed using classical Gaussian-based estimators. We analyze here some robust estimation procedures (M-estimators of location and scale) more suitable when non-Gaussian distributions are assumed. Jointly used with M-estimators, these new detectors allow to enhance the target detection performance in non-Gaussian environment while keeping the same performance than the classical detectors in Gaussian environment. Therefore, they provide a unified framework for target detection and anomaly detection in HSI.
|
6 |
Estimation robuste en population finieSeydi, Aliou 09 1900 (has links)
No description available.
|
7 |
Perforamances statistiques d'estimateurs non-linéairesChichignoud, Michael 25 November 2010 (has links) (PDF)
On se place dans le cadre de l'estimation non paramétrique dans le modèle de régression. Dans un premier temps, on dispose des observations Y dont la densité $g$ est connue et dépend d'une fonction de régression $f(X)$ inconnue. Dans cette thèse, cette fonction est supposée régulière, i.e. appartenant à une boule de Hölder. Le but est d'estimer la fonction $f$ à un point $y$ (estimation ponctuelle). Pour cela, nous développons un estimateur local de type {\it bayésien}, construit à partir de la densité $g$ des observations. Nous proposons une procédure adaptative s'appuyant sur la méthode de Lepski, qui permet de construire un estimateur adaptatif choisi dans la famille des estimateurs bayésiens locales indexés par la fenêtre. Sous certaines hypothèses suffisantes sur la densité $g$, notre estimateur atteint la vitesse adaptative optimale (en un certain sens). En outre, nous constatons que dans certains modèles, l'estimateur bayésien est plus performant que les estimateurs linéaires. Ensuite, une autre approche est considérée. Nous nous plaçons dans le modèle de régression additive, où la densité du bruit est inconnue, mais supposée symétrique. Dans ce cadre, nous développons un estimateur dit de {\it Huber} reposant sur l'idée de la médiane. Cet estimateur permet d'estimer la fonction de régression, quelque soit la densité du bruit additif (par exemple, densité gaussienne ou densité de Cauchy). Avec la méthode de Lepski, nous sélectionnons un estimateur qui atteint la vitesse adaptative classique des estimateurs linéaires sur les espaces de Hölder.
|
8 |
Estimation robuste des modèles de mélange sur des données distribuéesEl Attar, Ali 12 July 2012 (has links) (PDF)
Cette thèse propose une contribution en matière d'analyse de données, dans la perspective de systèmes informatiques distribués non-centralisés, pour le partage de données numériques. De tels systèmes se développent en particulier sur internet, possiblement à large échelle, mais aussi, par exemple, par des réseaux de capteurs. Notre objectif général est d'estimer la distribution de probabilité d'un jeu de données distribuées, à partir d'estimations locales de cette distribution, calculées sur des sous- jeux de données locaux. En d'autres termes, il s'est agi de proposer une technique pour agréger des estimés locaux pour en faire un estimé global. Notre proposition s'appuie sur la forme particulière que doivent prendre toutes les distributions de probabilité manipulées : elles doivent se formuler comme un mélange de lois gaussiennes multivariées. Notre contribution est une solution à la fois décentralisée et statistiquement robuste aux modèles locaux aberrants, pour mener à bien l'agrégation globale, à partir d'agrégations locales de mélanges de lois gaussiennes. Ces agrégations locales ne requièrent un accès qu'aux seuls paramètres des modèles de mélanges, et non aux données originales.
|
9 |
Identification de systèmes utilisant les réseaux de neurones : un compromis entre précision, complexité et charge de calculs.Romero ugalde, Héctor manuel 16 January 2013 (has links) (PDF)
Ce rapport porte sur le sujet de recherche de l'identification boîte noire du système non linéaire. En effet, parmi toutes les techniques nombreuses et variées développées dans ce domaine de la recherche ces dernières décennies, il semble toujours intéressant d'étudier l'approche réseau de neurones dans l'estimation de modèle de système complexe. Même si des modèles précis ont été obtenus, les principaux inconvénients de ces techniques restent le grand nombre de paramètres nécessaires et, en conséquence, le coût important de calcul nécessaire pour obtenir le niveau de pratique de la précision du modèle désiré. Par conséquent, motivés pour remédier à ces inconvénients, nous avons atteint une méthodologie complète et efficace du système d'identification offrant une précision équilibrée, la complexité et les modèles de coûts en proposant, d'une part, de nouvelles structures de réseaux de neurones particulièrement adapté à une utilisation très large en matière de modélisation système pratique non linéaire, d'autre part, un simple et efficace technique de réduction de modèle, et, troisièmement, une procédure de réduction de coût de calcul. Il est important de noter que ces deux dernières techniques de réduction peut être appliquée à une très large gamme d'architectures de réseaux de neurones sous deux simples hypothèses spécifiques qui ne sont pas du tout contraignant. Enfin, la dernière contribution importante de ce travail est d'avoir montré que cette phase d'estimation peut être obtenue dans un cadre robuste si la qualité des données d'identification qu'il oblige. Afin de valider la procédure d'identification système proposé, des exemples d'applications entraînées en simulation et sur un procédé réel, de manière satisfaisante validé toutes les contributions de cette thèse, confirmant tout l'intérêt de ce travail.
|
10 |
Identification de systèmes utilisant les réseaux de neurones : un compromis entre précision, complexité et charge de calculs. / System identification using neural networks : a balanced accuracy, complexity and computational cost approach.Romero Ugalde, Héctor Manuel 16 January 2013 (has links)
Ce rapport porte sur le sujet de recherche de l'identification boîte noire du système non linéaire. En effet, parmi toutes les techniques nombreuses et variées développées dans ce domaine de la recherche ces dernières décennies, il semble toujours intéressant d'étudier l'approche réseau de neurones dans l'estimation de modèle de système complexe. Même si des modèles précis ont été obtenus, les principaux inconvénients de ces techniques restent le grand nombre de paramètres nécessaires et, en conséquence, le coût important de calcul nécessaire pour obtenir le niveau de pratique de la précision du modèle désiré. Par conséquent, motivés pour remédier à ces inconvénients, nous avons atteint une méthodologie complète et efficace du système d'identification offrant une précision équilibrée, la complexité et les modèles de coûts en proposant, d'une part, de nouvelles structures de réseaux de neurones particulièrement adapté à une utilisation très large en matière de modélisation système pratique non linéaire, d'autre part, un simple et efficace technique de réduction de modèle, et, troisièmement, une procédure de réduction de coût de calcul. Il est important de noter que ces deux dernières techniques de réduction peut être appliquée à une très large gamme d'architectures de réseaux de neurones sous deux simples hypothèses spécifiques qui ne sont pas du tout contraignant. Enfin, la dernière contribution importante de ce travail est d'avoir montré que cette phase d'estimation peut être obtenue dans un cadre robuste si la qualité des données d'identification qu'il oblige. Afin de valider la procédure d'identification système proposé, des exemples d'applications entraînées en simulation et sur un procédé réel, de manière satisfaisante validé toutes les contributions de cette thèse, confirmant tout l'intérêt de ce travail. / This report concerns the research topic of black box nonlinear system identification. In effect, among all the various and numerous techniques developed in this field of research these last decades, it seems still interesting to investigate the neural network approach in complex system model estimation. Even if accurate models have been derived, the main drawbacks of these techniques remain the large number of parameters required and, as a consequence, the important computational cost necessary to obtain the convenient level of the model accuracy desired. Hence, motivated to address these drawbacks, we achieved a complete and efficient system identification methodology providing balanced accuracy, complexity and cost models by proposing, firstly, new neural network structures particularly adapted to a very wide use in practical nonlinear system modeling, secondly, a simple and efficient model reduction technique, and, thirdly, a computational cost reduction procedure. It is important to notice that these last two reduction techniques can be applied to a very large range of neural network architectures under two simple specific assumptions which are not at all restricting. Finally, the last important contribution of this work is to have shown that this estimation phase can be achieved in a robust framework if the quality of identification data compels it. In order to validate the proposed system identification procedure, application examples driven in simulation and on a real process, satisfactorily validated all the contributions of this thesis, confirming all the interest of this work.
|
Page generated in 0.1318 seconds