• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solidification Dendritique de Mélanges Binaires de Métaux sous l'Action de Champs Magnétique: Modélisation, Analyse Mathématique et Numérique

Rasheed, Amer 14 October 2010 (has links) (PDF)
La compréhension du comportement des matériaux en présence d'impuretés, durant le processus de solidification, nécessite le développement de méthodologies appropriées pour une analyse et un contrôle efficace des changements topologiques des microstructures (par exemple, la formation des dendrites) au cours des différentes phases de transformation. L'objectif de cette thèse est de construire un modèle pertinent de solidification d'alliages binaires sous l'action de champs magnétiques, d'analyser les systèmes issus du modèle mathématique ainsi développé, d'un point de vue théorique et numérique, et enfin de développer une méthode de contrôle optimal afin de contrôler la dynamique du front de solidification par l'action du champs magnétiques. Dans un premier temps, nous avons décrit la physique du problème et les lois fondamentales nécessaires à la modélisation, puis nous avons construit un nouveau modèle de champ de phase, qui tient compte de l'influence de l'action du champ magnétique sur le mouvement du front de solidification. Le modèle ainsi développé est caractérisé par le couplage de trois systèmes : un de type magnétohydrodynamique, un second de type Warren-Boettingger avec convection (représentant l'évolution du front de solidification et la concentration du mélange binaire) et un troisième représentant l'évolution de la température. Les équations du système complet décrivant le modèle, dans un domaine Ω inclus dans R^{n}, n ≤ 3, sont évolutives, non linéaires, couplées et anisotropes. Dans une seconde partie, nous avons effectué l'analyse théorique du modèle développé dans le cas isotherme et isotrope en dimension deux. Nous avons obtenu des résultats d'existence, de régularité, de stabilité et d'unicité d'une solution, sous certaines conditions sur des opérateurs non linéaires du système. Enfin, nous avons développé une méthode de contrôle optimal non linéaire : le champ magnétique (qui intervient sous forme multiplicative) joue le rôle de contrôle, et l'observation est l'état désiré de la dynamique du front. Nous avons démontré l'existence d'une solution optimale et obtenu la sensibilité de l'opérateur solution et les conditions d'optimalité en introduisant un problème adjoint. Cette partie théorique de la thèse est complétée par un important travail numérique. L'analyse et les simulations numériques ont été menées sur le problème complet bi-dimensionnel non linéaire (isotrope et anisotrope). Nous avons utilisé pour la discrétisation la méthode des lignes qui consiste à considérer séparément la discrétisation temporelle et spatiale. La discrétisation spatiale est effectuée par un schéma d'éléments finis mixtes et le système différentiel algébrique obtenu est résolu par l'utilisation du solveur DASSL. La discrétisation du domaine est effectuée par des mailles triangulaires non structurées. Dans le cas réaliste, elles correspondent à un maillage non uniforme et trés fin dans la zone de la dendrite et au niveau de l'interface. Nous avons obtenu des estimations d'erreur pour les différentes variables d'état du modèle et analysé la robustesse et la stabilité des schémas d'approximation. Ce code numérique a été validé sur différents exemples, et donne d'excellents résultats. Ensuite, nous avons exploité le code pour traiter un problème réaliste, à savoir la solidification dendritique d'un alliage binaire Nickel-Cuivre, et analyser l'influence de champs magnétiques sur l'évolution des dendrites. Les résultats obtenus montrent l'efficacité de l'approche à reproduire les observations expérimentales.
2

Modélisation et simulation du mouvement de structures fines dans un fluide visqueux : application au transport mucociliaire / Modelling and simulation of the movement of thin structures in a viscous fluid : application to the muco-ciliary transport

Lacouture, Loïc 23 June 2016 (has links)
Une grande part des muqueuses à l’intérieur du corps humain sont recouvertes de cils qui, par leurs mouvements coordonnés, conduisent à une circulation de la couche de fluide nappant la muqueuse. Dans le cas de la paroi interne des bronches, ce processus permet l’évacuation des impuretés inspirées à l’extérieur de l’appareil respiratoire.Dans cette thèse, nous nous intéressons aux effets du ou des cils sur le fluide, en nous plaçant à l’échelle du cil, et on considère pour cela les équations de Stokes incompressible. Due à la finesse du cil, une simulation directe demanderait un raffinement important du maillage au voisinage du cil, pour un maillage qui évoluerait à chaque pas de temps. Cette approche étant trop onéreuse en terme de coûts de calculs, nous avons considéré l’asymptotique d’un diamètre du cil tendant vers 0 et d’une vitesse qui tend vers l’infini : le cil est modélisé par un Dirac linéique de forces en terme source. Nous avons montré qu’il était possible de remplacer ce Dirac linéique par une somme de Dirac ponctuels distribués le long du cil. Ainsi, nous nous sommes ramenés, par linéarité, à étudier le problème de Stokes avec en terme source une force ponctuelle. Si les calculs sont ainsi simplifiés (et leurs coûts réduits), le problème final est lui plus singulier, ce qui motive une analyse numérique fine et l’élaboration d’une nouvelle méthode de résolution.Nous avons d’abord étudié une version scalaire de ce problème : le problème de Poisson avec une masse de Dirac en second membre. La solution exacte étant singulière, la solution éléments finis est à définir avec précaution. La convergence de la méthode étant dégradée dans ce cas-là, par rapport à celle dans le cas régulier, nous nous sommes intéressés à des estimations locales. Nous avons démontré une convergence quasi-optimale en norme Hs (s ě 1) sur un sous-domaine qui exclut la singularité. Des résultats analogues ont été obtenus dans le cas du problème de Stokes.Pour palier les problèmes liés à une mauvais convergence sur l’ensemble du domaine, nous avons élaboré une méthode pour résoudre des problème elliptiques avec une masse de Dirac ou une force ponctuelle en terme source. Basée sur celle des éléments finis standard, elle s’appuie sur la connaissance explicite de la singularité de la solution exacte. Une fois données la position de chacun des cils et leur paramétrisation, notre méthode rend possible la simulation directe en 3d d’un très grand nombre de cils. Nous l’avons donc appliquée au cas du transport mucociliaire dans les poumons. Cet outil numérique nous donne accès à des informations que l’on ne peut avoir par l’expérience, et permet de simuler des cas pathologiques comme par exemple une distribution éparse des cils. / Numerous mucous membranes inside the human body are covered with cilia which, by their coordinated movements, lead to a circulation of the layer of fluid coating the mucous membrane, which allows, for example, in the case of the internal wall of the bronchi, the evacuation of the impurities inspired outside the respiratory system.In this thesis, we integrate the effects of the cilia on the fluid, at the scale of the cilium. For this, we consider the incompressible Stokes equations. Due to the very small thickness of the cilia, the direct computation would request a time-varying mesh grading around the cilia. To avoid too prohibitive computational costs, we consider the asymptotic of a zero diameter cilium with an infinite velocity: the cilium is modelled by a lineic Dirac of force in source term. In order to ease the computations, the lineic Dirac of forces can be approached by a sum of punctual Dirac masses distributed along the cilium. Thus, by linearity, we have switched our initial problem with the Stokes problem with a punctual force in source term. Thus, we simplify the computations, but the final problem is more singular than the initial problem. The loss of regularity involves a deeper numerical analysis and the development of a new method to solve the problem.We have first studied a scalar version of this problem: Poisson problem with a Dirac right-hand side. The exact solution is singular, therefore the finite element solution has to be defined with caution. In this case, the convergence is not as good as in the regular case, and thus we focused on local error estimates. We have proved a quasi-optimal convergence in H1-norm (s ď 1) on a sub-domain which does not contain the singularity. Similar results have been shown for the Stokes problem too.In order to recover an optimal convergence on the whole domain, we have developped a numerical method to solve elliptic problems with a Dirac mass or a punctual force in source term. It is based on the standard finite element method and the explicit knowl- edge of the singularity of the exact solution. Given the positions of the cilia and their parametrisations, this method permits to compute in 3d a very high number of cilia. We have applied this to the study of the mucociliary transport in the lung. This numerical tool gives us information we do not have with the experimentations and pathologies can be computed and studied by this way, like for example a small number of cilia.

Page generated in 0.1392 seconds