11 |
Projeto de controle robusto para sistemas chaveados via LMIs / Robust control design for switched systems via LMIsTello, Ivan Francisco Yupanqui [UNESP] 20 June 2017 (has links)
Submitted by IVAN FRANCISCO YUPANQUI TELLO null (ivan.yupanqui.tello@hotmail.com) on 2017-06-28T18:37:59Z
No. of bitstreams: 1
minha dissertacao.pdf: 4687608 bytes, checksum: 8a9fc873657ce7c21593f7e3653e4b0c (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-06-28T20:46:09Z (GMT) No. of bitstreams: 1
tello_ify_me_ilha.pdf: 4687608 bytes, checksum: 8a9fc873657ce7c21593f7e3653e4b0c (MD5) / Made available in DSpace on 2017-06-28T20:46:09Z (GMT). No. of bitstreams: 1
tello_ify_me_ilha.pdf: 4687608 bytes, checksum: 8a9fc873657ce7c21593f7e3653e4b0c (MD5)
Previous issue date: 2017-06-20 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Neste trabalho são apresentados uma série de resultados relacionados com as técnicas de controle para sistemas lineares chaveados incertos que asseguram índices de desempenho e custos garantidos no projeto. Inicialmente a técnica abordada para este estudo consiste na utilização das desigualdades de Lyapunov-Metzler e as propriedades dos sistemas Estritamente Reais Positivos (ERP). São abordados os sistemas Lyapunov-Metzler-ERP (LMERP), que permitem o desenvolvimento de um método de projeto de estabilização para sistemas que apresentam comutação e incertezas no modelo, usando para isto a realimentação do vetor de estado. A análise de estabilidade é descrita por meio de Desigualdades Matriciais Lineares (em inglês: Linear Matrix Inequalities), LMIs, que, quando factíveis, são facilmente resolvidas por meio de ferramentas disponíveis de programação convexa. Neste trabalho trata-se também da síntese via realimentação de estado com chaveamento no ganho que assegura o critério de desempenho Hoo. Para a validação das estratégias de controle mencionadas foram realizadas simulações e experimentos práticos em um sistema de suspensão ativa de bancada e em um sistema ball balancer, equipamentos fabricados pela Quanser. Os resultados comprovam a eficácia dos método propostos tanto nas simulações quanto nos testes realizados em bancada. / This work presents a series of results related to the control techniques for uncertain switched linear systems that ensure performance indicators and guaranteed cost in the design. Initially the technique discussed in this study is the use of Lyapunov-Metzler Inequalities and properties of Strictly Positive Real Systems (SPR), so the Lyapunov-Metzler-SPR systems (LMSRP) are revised, which allow the development of a method of stabilization for systems that have switching and uncertainties in the model, using for this the state feedback. The stability analysis is described by Linear Matrix Inequalities, LMIs, that when are feasible, these are easily solved through tools available in convex programming literature. We also deal with the synthesis via state feedback with switching in the gain that ensures the performance criterion Hoo. In order to validate the proposed strategy simulations and experiments were performed on a bench active suspension system and a ball balancer system, equipments manufactured by Quanser. The results prove the effectiveness of the proposed method both in simulations and in bench tests.
|
12 |
Algumas aplicações de jogos topológicos à análise / Some applications of topological games to analysisJuan Luis Jaisuño Fuentes Maguiña 17 May 2018 (has links)
Neste trabalho apresentamos alguns jogos topológicos e suas aplicações à análise. Com esse fim, se fornece condições necessárias para que funções aproximadamente contínuas se tornem contínuas, se caracteriza os conjuntos estritamente pseudo-completos nos espaços de Banach e, assim também, se constrói um espaço de diferenciabilidade Gâteaux que não é Asplund fraco. / In this work we present some topological games and their applications to analysis. For this purpose, necessary conditions are given for nearly continuous functions to become continuous, we characterize the strictly pseudo-complete sets in the Banach spaces and we also construct a Gâteaux differentiability space that is not weak Asplund.
|
13 |
Núcleos isotrópicos e positivos definidos sobre espaços 2-homogêneos / Positive definite and isotropic kernels on compact two-point homogeneous spacesRafaela Neves Bonfim 25 July 2017 (has links)
Este trabalho é composto de duas partes distintas, ambas dentro de um mesmo tema: núcleos positivos definidos sobre variedades. Na primeira delas fornecemos uma caracterização para os núcleos contínuos, isotrópicos e positivos definidos a valores matriciais sobre um espaço compacto 2-homogêneo. Utilizando-a, investigamos a positividade definida estrita destes núcleos, apresentando inicialmente algumas condições suficientes para garantir tal propriedade. No caso em que o espaço 2-homogêneo não é uma esfera, descrevemos uma caracterização definitiva para a positividade definida estrita do núcleo. Neste mesmo caso, para núcleos a valores no espaço das matrizes de ordem 2, apresentamos uma caraterização alternativa para a positividade definida estrita do núcleo via os dois elementos na diagonal principal da representação matricial do núcleo. Na segunda parte, nos restringimos a núcleos positivos definidos escalares sobre os mesmos espaços e determinamos condições necessárias e suficientes para a positividade definida estrita de um produto de núcleos positivos definidos sobre um mesmo espaço compacto 2-homogêneo. Apresentamos ainda uma extensão deste resultado para núcleos positivos definidos sobre o produto cartesiano de um grupo localmente compacto com uma esfera de dimensão alta, mantendo-se a isotropia na componente esférica. / In this work we present a characterization for the continuous, isotropic and positive definite matrix-valued kernels on a compact two-point homogeneous space. After that, we consider the strict positive definiteness of the kernels, describing some independent sufficient conditions for that property to hold. In the case the space is not a sphere, one of the conditions becomes necessary and sufficient for the strict positive definiteness of the kernel. Further, for 22- matrix-valued kernels on a compact two-point homogeneous space which is not a sphere, we present a characterization for the strict positive definiteness of the kernels based upon the main diagonal elements in its matrix representation. In the last part of this work, we restrict ourselves to scalar kernels and determine necessary and sufficient conditions in order that the product of two continuous, isotropic and positive definite kernels on a compact two-point homogeneous space be strictly positive definite. We also discuss the extension of this result for kernels defined on a product of a locally compact group and a high dimensional sphere.
|
Page generated in 0.135 seconds