• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RBC model - aplikace na ČR / RBC model - application to the Czech Republic

Báča, Petr January 2009 (has links)
The diploma thesis deals with the basic Real Business Cycle (RBC) model. RBC theory provides pure supply-side explanation of economic fluctuations. Generaly acknowledged contribution of RBC theory is the fact that the model is developed strictly on microeconomic basis. The thesis consists of two basic parts, theoretical and practical. First, historical background of RBC theory is mentioned. Then the basic RBC model is step-by-step derived and all equations are provided with explanations. In the last theoretical part section RBC theory critisism is discussed. In the practical part the derived basic model is applied to the Czech economy. First certain properties of the Czech business cycles are examined. Then, the basic model is calibrated, simulated and the results are commented.
2

Desenvolvimento de ferramenta computacional de alta ordem para a solução de problemas de propagação acústica. / Development of a high-order computational tool for solving acoustic propagation problems

Maciel, Saulo Ferreira 29 April 2013 (has links)
O desenvolvimento de uma ferramenta de Dinâmica de Fluidos Computacional que utiliza Método de Elementos Finitos baseada na discretização de Galerkin descontínuo é apresentado neste trabalho com objetivo de resolver a equação de Euler linearizada para escoamento compressível em duas dimensões usando malhas estruturadas e não estruturadas. Procuramos utilizar esta ferramenta como um propagador de ondas sonoras para estudar fenômenos aeroacústicos. O problema de Riemann presente no fluxo convectivo da equação de Euler é tratado com um método upwind HLL e para o avanço da solução no tempo é usado o método de Runge-Kutta explícito de 4 estágios com segunda ordem de precisão. A eficiência computacional, a convergência do método e a precisão são testadas através de simulações de escoamentos já apresentadas na literatura. A taxa de convergência para altas ordens de aproximação é assintótica que é um resultado compatível com a formulação Galerkin descontínuo. / The development of a Computation Fluid Dynamic Tool based on the Finite Element Method with discontinuous Galerkin discretization is presented in this work. The aim of this study is to solve the compressible linearized Euler\'s equation in two dimensions on structured and non structured meshes. This tool has been used as a means to study aeroacoustics phenomena. The Riemann\'s problem presented on a convective flow in Euler\'s equation is tackled by a HLL\'s method and the time integration being used is the four-stage Runge-Kutta explicit method with second order of accuracy. The computational efficiency, the convergence of the method and the accuracy are tested by comparing our results for flow simulations with those that are available in the literature. The convergence rate to high approximation order is asymptotic and it shows a result which is compatible with a discontinuous Galerkin formulation.
3

LOGARITMOS DE NÚMEROS NEGATIVOS

Cruz, Christian Bueno 20 March 2015 (has links)
Made available in DSpace on 2017-07-21T20:56:27Z (GMT). No. of bitstreams: 1 Christian Bueno Cruz.pdf: 2632425 bytes, checksum: f57aafbd2d12b91ce6244542abec1d03 (MD5) Previous issue date: 2015-03-20 / The great importance in the history of mathematics, concerning the study of logarithms, is consensual, both because the purpose for which they were created and because of their various applications. When this content is taught in high school, its definition and its basic properties to the positive real numbers are presented, but logarithms for negative numbers are not addressed. This work has as main objective the depth study of obtaining the logarithms for negative numbers: historical context, properties, exceptions and particularities, complex numbers and a study of the Euler equation. With the derived results of this study it is expected to provide input to obtain a methodology for teaching this subject, even superficially, in high school. / A grande importância na história da matemática no que concerne ao estudo dos logaritmos é consensual, tanto pela finalidade com que foram criados bem como devido às suas diversas aplicações. Quando este conteúdo é ensinado no ensino médio, são apresentadas sua definição e suas propriedades básicas para os números reais positivos, porém logaritmos para números negativos não são abordados. Este trabalho tem por objetivo principal o estudo aprofundado da obtenção dos logaritmos para números negativos: contextualização histórica, propriedades, exceções e particularidades, números complexos e um estudo sobre a equação de Euler. Com os resultados derivados do presente trabalho, espera-se fornecer subsídios para a obtenção de uma metodologia para o ensino de tal assunto, mesmo que superficialmente, no ensino médio.
4

none

Li, Chin-Yu 02 August 2001 (has links)
none
5

Desenvolvimento de ferramenta computacional de alta ordem para a solução de problemas de propagação acústica. / Development of a high-order computational tool for solving acoustic propagation problems

Saulo Ferreira Maciel 29 April 2013 (has links)
O desenvolvimento de uma ferramenta de Dinâmica de Fluidos Computacional que utiliza Método de Elementos Finitos baseada na discretização de Galerkin descontínuo é apresentado neste trabalho com objetivo de resolver a equação de Euler linearizada para escoamento compressível em duas dimensões usando malhas estruturadas e não estruturadas. Procuramos utilizar esta ferramenta como um propagador de ondas sonoras para estudar fenômenos aeroacústicos. O problema de Riemann presente no fluxo convectivo da equação de Euler é tratado com um método upwind HLL e para o avanço da solução no tempo é usado o método de Runge-Kutta explícito de 4 estágios com segunda ordem de precisão. A eficiência computacional, a convergência do método e a precisão são testadas através de simulações de escoamentos já apresentadas na literatura. A taxa de convergência para altas ordens de aproximação é assintótica que é um resultado compatível com a formulação Galerkin descontínuo. / The development of a Computation Fluid Dynamic Tool based on the Finite Element Method with discontinuous Galerkin discretization is presented in this work. The aim of this study is to solve the compressible linearized Euler\'s equation in two dimensions on structured and non structured meshes. This tool has been used as a means to study aeroacoustics phenomena. The Riemann\'s problem presented on a convective flow in Euler\'s equation is tackled by a HLL\'s method and the time integration being used is the four-stage Runge-Kutta explicit method with second order of accuracy. The computational efficiency, the convergence of the method and the accuracy are tested by comparing our results for flow simulations with those that are available in the literature. The convergence rate to high approximation order is asymptotic and it shows a result which is compatible with a discontinuous Galerkin formulation.
6

Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients

Fanelli, Francesco 28 May 2012 (has links) (PDF)
The present thesis is devoted both to the study of strictly hyperbolic operators with low regularity coefficients and of the density-dependent incompressible Euler system. On the one hand, we show a priori estimates for a second order strictly hyperbolic operator whose highest order coefficients satisfy a log-Zygmund continuity condition in time and a log-Lipschitz continuity condition with respect to space. Such an estimate involves a time increasing loss of derivatives. Nevertheless, this is enough to recover well-posedness for the associated Cauchy problem in the space $H^infty$ (for suitably smooth second order coefficients).In a first time, we consider acomplete operator in space dimension $1$, whose first order coefficients were assumed Hölder continuous and that of order $0$only bounded. Then, we deal with the general case of any space dimension, focusing on a homogeneous second order operator: the step to higher dimension requires a really different approach. On the other hand, we consider the density-dependent incompressible Euler system. We show its well-posedness in endpoint Besov spaces embedded in the class of globally Lipschitz functions, producing also lower bounds for the lifespan of the solution in terms of initial data only. This having been done, we prove persistence of geometric structures, such as striated and conormal regularity, for solutions to this system. In contrast with the classical case of constant density, even in dimension $2$ the vorticity is not transported by the velocity field. Hence, a priori one can expect to get only local in time results. For the same reason, we also have to dismiss the vortex patch structure. Littlewood-Paley theory and paradifferential calculus allow us to handle these two different problems .A new version of paradifferential calculus, depending on a parameter $ggeq1$, is also needed in dealing with hyperbolic operators with nonregular coefficients. The general framework is that of Besov spaces, which includes in particular Sobolev and Hölder sets. Intermediate classes of functions, of logaritmic type, come into play as well
7

On the Trajectories of Particles in Solitary Waves

Pirilla, Patrick Brian 19 July 2011 (has links)
No description available.
8

Mathematical analysis of models of non-homogeneous fluids and of hyperbolic equations with low regularity coefficients / Analyse mathématique des modèles de fluids non-homogènes et d'équations hyperboliques à coefficients peu réguliers

Fanelli, Francesco 28 May 2012 (has links)
Cette thèse est consacrée à l'étude des opérateurs strictement hyperboliques à coefficients peu réguliers, aussi bien qu'à l'étude du système d'Euler incompressible à densité variable. Dans la première partie, on montre des estimations a priori pour des opérateurs strictement hyperboliques dont les coefficients d'ordre le plus grand satisfont une condition de continuité log-Zygmund par rapport au temps et une condition de continuité log-Lipschitz par rapport à la variable d'espace. Ces estimations comportent une perte de dérivées qui croît en temps. Toutefois, elles sont suffisantes pour avoir encore le caractère bien posé du problème de Cauchy associé dans l'espace H^inf (pour des coefficients du deuxième ordre ayant assez de régularité).Dans un premier temps, on considère un opérateur complet en dimension d'espace égale à 1, dont les coefficients du premier ordre étaient supposés hölderiens et celui d'ordre 0 seulement borné. Après, on traite le cas général en dimension d'espace quelconque, en se restreignant à un opérateur de deuxième ordre homogène: le passage à la dimension plus grande exige une approche vraiment différente. Dans la deuxième partie de la thèse, on considère le système d'Euler incompressible à densité variable. On montre son caractère bien posé dans des espaces de Besov limites, qui s'injectent dans la classe des fonctions globalement lipschitziennes, et on établit aussi des bornes inférieures pour le temps de vie de la solution ne dépendant que des données initiales. Cela fait, on prouve la persistance des structures géométriques, comme la régularité stratifiée et conormale, pour les solutions de ce système. À la différence du cas classique de densité constante, même en dimension 2 le tourbillon n'est pas transporté par le champ de vitesses. Donc, a priori on peut s'attendre à obtenir seulement des résultats locaux en temps. Pour la même raison, il faut aussi laisser tomber la structure des poches de tourbillon. La théorie de Littlewood-Paley et le calcul paradifférentiel nous permettent d'aborder ces deux différents problèmes. En plus, on a besoin aussi d'une nouvelle version du calcul paradifférentiel, qui dépend d'un paramètre plus grand que ou égal à 1, pour traiter les opérateurs à coefficients peu réguliers. Le cadre fonctionnel adopté est celui des espaces de Besov, qui comprend en particulier les ensembles de Sobolev et de Hölder. Des classes intermédiaires de fonctions, de type logarithmique, entrent, elles aussi, en jeu / The present thesis is devoted both to the study of strictly hyperbolic operators with low regularity coefficients and of the density-dependent incompressible Euler system. On the one hand, we show a priori estimates for a second order strictly hyperbolic operator whose highest order coefficients satisfy a log-Zygmund continuity condition in time and a log-Lipschitz continuity condition with respect to space. Such an estimate involves a time increasing loss of derivatives. Nevertheless, this is enough to recover well-posedness for the associated Cauchy problem in the space $H^infty$ (for suitably smooth second order coefficients).In a first time, we consider acomplete operator in space dimension $1$, whose first order coefficients were assumed Hölder continuous and that of order $0$only bounded. Then, we deal with the general case of any space dimension, focusing on a homogeneous second order operator: the step to higher dimension requires a really different approach. On the other hand, we consider the density-dependent incompressible Euler system. We show its well-posedness in endpoint Besov spaces embedded in the class of globally Lipschitz functions, producing also lower bounds for the lifespan of the solution in terms of initial data only. This having been done, we prove persistence of geometric structures, such as striated and conormal regularity, for solutions to this system. In contrast with the classical case of constant density, even in dimension $2$ the vorticity is not transported by the velocity field. Hence, a priori one can expect to get only local in time results. For the same reason, we also have to dismiss the vortex patch structure. Littlewood-Paley theory and paradifferential calculus allow us to handle these two different problems .A new version of paradifferential calculus, depending on a parameter $ggeq1$, is also needed in dealing with hyperbolic operators with nonregular coefficients. The general framework is that of Besov spaces, which includes in particular Sobolev and Hölder sets. Intermediate classes of functions, of logaritmic type, come into play as well
9

Estudio de las fuerzas de arrastre de cables umbilicales de robots de inspección o desobstrucción de tuberías

Marenco, Javier January 2017 (has links)
The present work makes a study of the drag forces of umbilical cables of pipes inspection robots and aims to determine a valid model for their calculation. For this purpose, the physical models are developed in relation to the friction forces for the straight and curved sections in all their possible configurations, obtaining for each case a differential equation that models the friction phenomenon and that includes fluid and cable the characteristics. By solving the differential equation, an explicit expression is obtained for the value of the frictional force in each case. In the present work, the obtained model is evaluated in comparison with the traditional simplified model. It is also presented a study about the influence of the stiffness of the cable and how this characteristic generates the forces of the normal general forces at the ends of the curves that, finally, result in an additional component of the frictional forces. By comparison with actual drag force measurements, the model obtained is validated. The complexity of the calculations required for the determination of the pull forces in real pipes makes it necessary to use software tools to facilitate it. For this reason, two software applications are developed, one specific for rigid pipes and another one for flexible pipes. A series of strategies of how to keep low the maximum value of the cable tension are presented too. / El presente trabajo se dedica al estudio de fuerzas de arrastre de cables umbilicales de robot de inspección o desobstrucción de tuberías y tiene como objetivo la determinación de un modelo válido para el cálculo de las mismas. Para tal fin, se desarrollan los modelos físicos en relación a las fuerzas de rozamiento presentes para tramos rectos y curvas en todas sus configuraciones posibles, obteniéndose así, para cada caso, una ecuación diferencial que modela el fenómeno del rozamiento y que incluye las variables propias del fluido presente y las características pertinentes del cable. Mediante la resolución de esa ecuación diferencial, se obtiene una expresión explícita para el valor de la fuerza de rozamiento en cada caso. En el presente trabajo, el modelo obtenido es evaluado mediante comparación con el modelo simplificado tradicional de manera de ver los alcances del nuevo modelo. Se realiza también una presentación de la influencia que tiene la rigidez del cable y como esta rigidez a la flexión genera fuerzas normales adicionales en los extremos de las curvas que redundan finalmente en una componente adicional de las fuerzas de fricción. Mediante comparación con mediciones reales de fuerza de arrastre se valida el modelo obtenido Dada la complejidad de los cálculos requeridos para la determinación de las fuerzas de arrastre de tuberías reales se desarrollan dos aplicaciones de software para el cálculo de las mismas, una específica para tuberías rígidas y otra para tuberías flexibles utilizando algoritmos de cálculo basados en las ecuaciones determinadas. Son presentadas también, una serie de estrategias de forma de mantener acotado el valor máximo de la tensión de cable. Dentro de las estrategias están la elección de materiales de recubrimiento de cable que presenten un bajo coeficiente de fricción con la tubería, la adopción de cables cuyo peso específico sea tal que el peso se iguale a la fuerza de empuje y la incorporación de varios dispositivos de tracción del cable de modo de mantener bajas las contra tensiones del cable utilizando un sistema distribuido de empuje.
10

Structures ordonnées dans des écoulements géophysiques / Ordered structures in geophysical flows

Renault, Coralie 16 May 2018 (has links)
Dans cette thèse, on s'est intéressé à la dynamique des poches de tourbillon pour des équations issues de la mécanique des fluides posées dans le plan. La thèse est composée de trois partie indépendantes. Un des objectifs est d'établir l'existence des tourbillons uniformément concentrés et rigides, c’est-à-dire, qui ne se déforment pas lors de l'évolution. Nous analysons deux configurations liées à la nature topologique du support: poches simplement et doublement connexes. Nos solutions sont obtenues via des techniques de bifurcations et d'analyse complexe. Le deuxième objectif est d'obtenir des précisions sur la structure globale du diagramme de bifurcation et sa réponse vis-à-vis des petites perturbations dans le modèle. Plus précisément, dans le deuxième chapitre on prouve l'existence de V-states doublement connexes dans un voisinage de l'anneau pour le modèle des surfaces quasi-géostrophique. On montre que l'on peut construire des branches de solutions qui sont des anneaux perturbés pour certaines valeurs explicites de vitesses angulaires qui sont liées aux fonctions hypergéométriques de Gauss et aux fonctions de Bessel. Le troisième chapitre porte sur l'étude de la structure du diagramme de bifurcation dans le cas doublement connexes pour l'équation d'Euler. Numériquement, près d'un cas dégénéré, les deux branches issues des deux vitesses angulaires possibles semblaient se rejoindre pour former un lacet. Nous avons prouvé analytiquement ce résultat. Le quatrième chapitre porte sur le modèle shallow water quasi-géostrophique. Dans une première partie, on prouve l'existence de V-states simplement connexes dans un voisinage du tourbillon de Rankine pour un nombre dénombrable de vitesses angulaires liées aux fonctions de Bessel modifiées. La deuxième partie porte sur la réponse du diagramme de bifurcation lorsque l'on fait varier un paramètre du modèle. On montre en particulier qu'une singularité présente lors d'un cas limite est éclatée. Notre étude analytique a été complétée par des simulations numériques portant sur les V-states limites pour les symétries deux et trois. / In this dissertation, we are concerned with the vortex dynamics for some equations arising in fluid mechanics. We distinguish three independent parts. One of the objectives is to prove the existence of uniformly concentrated rigid vortices, they do not change their shapes during the motion. We examine two configurations related to the topological nature of the support: simply and doubly connected vortex patches. Our solutions are obtained using bifurcation arguments and complex analysis tools. The second objective is to obtain some precisions on the global structure of the bifurcation diagram and its response to small perturbations. More precisely, in the second chapter we prove the existence of doubly connected V-states in a neighborhood of the annulus for the surface quasi-geostrophic model. We check that we can construct some branches of solutions which are perturbated annulus at some angular velocities related to hypergeometric Gauss functions and Bessel functions. The goal of the third chapter is to study the structure of the bifurcation diagram in the doubly connected case for Euler equations. Numerically, close to a degenerate case, the two branches of solutions come from the two angular velocities seems to merge to form a loop. We prove analytically this result. In the last chapter, we focus on the shallow quasi-geostrophic model. In the first part, we prove the existence of the simply V-states in a neighborhood of the Rankine Vortices for a countable number of angular velocities related to modified Bessel functions. In the second part, we study the reaction of the diagram bifurcation for small perturbations of the parameter. In particular, we prove that some singularities are broken due to a resonance phenomenon. Our analytical study is completed by numerical simulations on the limiting V-states for the two and three fold symetries.

Page generated in 0.0862 seconds