• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Résolution de problème inverse et propagation d'incertitudes : application à la dynamique des gaz compressibles / Inverse problem and uncertainty quantification : application to compressible gas dynamics

Birolleau, Alexandre 30 April 2014 (has links)
Cette thèse porte sur la propagation d'incertitudes et la résolution de problème inverse et leur accélération par Chaos Polynomial. L'objectif est de faire un état de l'art et une analyse numérique des méthodes spectrales de type Chaos Polynomial, d'en comprendre les avantages et les inconvénients afin de l'appliquer à l'étude probabiliste d'instabilités hydrodynamiques dans des expériences de tubes à choc de type Richtmyer-Meshkov. Le second chapitre fait un état de l'art illustré sur plusieurs exemples des méthodes de type Chaos Polynomial. Nous y effectuons son analyse numérique et mettons en évidence la possibilité d'améliorer la méthode, notamment sur des solutions irrégulières (en ayant en tête les difficultés liées aux problèmes hydrodynamiques), en introduisant le Chaos Polynomial généralisé itératif. Ce chapitre comporte également l'analyse numérique complète de cette nouvelle méthode. Le chapitre 3 a fait l'objet d'une publication dans Communication in Computational Physics, celle-ci a récemment été acceptée. Il fait l'état de l'art des méthodes d'inversion probabilistes et focalise sur l'inférence bayesienne. Il traite enfin de la possibilité d'accélérer la convergence de cette inférence en utilisant les méthodes spectrales décrites au chapitre précédent. La convergence théorique de la méthode d'accélération est démontrée et illustrée sur différents cas-test. Nous appliquons les méthodes et algorithmes des deux chapitres précédents à un problème complexe et ambitieux, un écoulement de gaz compressible physiquement instable (configuration tube à choc de Richtmyer-Meshkov) avec une analyse poussée des phénomènes physico-numériques en jeu. Enfin en annexe, nous présentons quelques pistes de recherche supplémentaires rapidement abordées au cours de cette thèse. / This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developping shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis.
2

Contribution à l'analyse numérique des méthodes de couplage particules-grille en mécanique des fluides

Kong, Jian Xin 07 October 1993 (has links) (PDF)
Ce travail concerne l'étude numérique des méthodes du couplage particules-grille (ou appelée methode de vortex in cell) en écoulements bidimensionnels de fluides incompressibles, tant parfait que peu visqueux. Dans la première partie de ce travail on s'intéresse a la resolution numérique des équations d'Euler incompressibles par des méthodes de vortex in cell (vic). On propose une technique itérative pour en améliorer la précision et on montre sur des cas tests l'efficacité de ces techniques. Dans la seconde partie, on montre la convergence pour les équations de navier-stokes d'une methode de vortex utilisant la diffusion numérique produite par la reinitialisation des particules pour simuler la diffusion physique. On définit un schéma vic base sur les techniques de la première partie et on l'utilise pour la simulation de turbulence bidimensionnelle périodique. On obtient les premiers résultats satisfaisants par methode de vortex in cell pour ce cas test difficile
3

Quelques problèmes de contrôlabilité

Horsin, Thierry 11 June 2010 (has links) (PDF)
On présente quelques résultats de contrôlabilité et de contrôlabilité lagrangienne sur des équations aux dérivées partielles.
4

Structures ordonnées dans des écoulements géophysiques / Ordered structures in geophysical flows

Renault, Coralie 16 May 2018 (has links)
Dans cette thèse, on s'est intéressé à la dynamique des poches de tourbillon pour des équations issues de la mécanique des fluides posées dans le plan. La thèse est composée de trois partie indépendantes. Un des objectifs est d'établir l'existence des tourbillons uniformément concentrés et rigides, c’est-à-dire, qui ne se déforment pas lors de l'évolution. Nous analysons deux configurations liées à la nature topologique du support: poches simplement et doublement connexes. Nos solutions sont obtenues via des techniques de bifurcations et d'analyse complexe. Le deuxième objectif est d'obtenir des précisions sur la structure globale du diagramme de bifurcation et sa réponse vis-à-vis des petites perturbations dans le modèle. Plus précisément, dans le deuxième chapitre on prouve l'existence de V-states doublement connexes dans un voisinage de l'anneau pour le modèle des surfaces quasi-géostrophique. On montre que l'on peut construire des branches de solutions qui sont des anneaux perturbés pour certaines valeurs explicites de vitesses angulaires qui sont liées aux fonctions hypergéométriques de Gauss et aux fonctions de Bessel. Le troisième chapitre porte sur l'étude de la structure du diagramme de bifurcation dans le cas doublement connexes pour l'équation d'Euler. Numériquement, près d'un cas dégénéré, les deux branches issues des deux vitesses angulaires possibles semblaient se rejoindre pour former un lacet. Nous avons prouvé analytiquement ce résultat. Le quatrième chapitre porte sur le modèle shallow water quasi-géostrophique. Dans une première partie, on prouve l'existence de V-states simplement connexes dans un voisinage du tourbillon de Rankine pour un nombre dénombrable de vitesses angulaires liées aux fonctions de Bessel modifiées. La deuxième partie porte sur la réponse du diagramme de bifurcation lorsque l'on fait varier un paramètre du modèle. On montre en particulier qu'une singularité présente lors d'un cas limite est éclatée. Notre étude analytique a été complétée par des simulations numériques portant sur les V-states limites pour les symétries deux et trois. / In this dissertation, we are concerned with the vortex dynamics for some equations arising in fluid mechanics. We distinguish three independent parts. One of the objectives is to prove the existence of uniformly concentrated rigid vortices, they do not change their shapes during the motion. We examine two configurations related to the topological nature of the support: simply and doubly connected vortex patches. Our solutions are obtained using bifurcation arguments and complex analysis tools. The second objective is to obtain some precisions on the global structure of the bifurcation diagram and its response to small perturbations. More precisely, in the second chapter we prove the existence of doubly connected V-states in a neighborhood of the annulus for the surface quasi-geostrophic model. We check that we can construct some branches of solutions which are perturbated annulus at some angular velocities related to hypergeometric Gauss functions and Bessel functions. The goal of the third chapter is to study the structure of the bifurcation diagram in the doubly connected case for Euler equations. Numerically, close to a degenerate case, the two branches of solutions come from the two angular velocities seems to merge to form a loop. We prove analytically this result. In the last chapter, we focus on the shallow quasi-geostrophic model. In the first part, we prove the existence of the simply V-states in a neighborhood of the Rankine Vortices for a countable number of angular velocities related to modified Bessel functions. In the second part, we study the reaction of the diagram bifurcation for small perturbations of the parameter. In particular, we prove that some singularities are broken due to a resonance phenomenon. Our analytical study is completed by numerical simulations on the limiting V-states for the two and three fold symetries.
5

Résolution de problème inverse et propagation d'incertitudes : application à la dynamique des gaz compressibles

Birolleau, Alexandre 30 April 2014 (has links) (PDF)
Cette thèse porte sur la propagation d'incertitudes et la résolution de problème inverse et leur accélération par Chaos Polynomial. L'objectif est de faire un état de l'art et une analyse numérique des méthodes spectrales de type Chaos Polynomial, d'en comprendre les avantages et les inconvénients afin de l'appliquer à l'étude probabiliste d'instabilités hydrodynamiques dans des expériences de tubes à choc de type Richtmyer-Meshkov. Le second chapitre fait un état de l'art illustré sur plusieurs exemples des méthodes de type Chaos Polynomial. Nous y effectuons son analyse numérique et mettons en évidence la possibilité d'améliorer la méthode, notamment sur des solutions irrégulières (en ayant en tête les difficultés liées aux problèmes hydrodynamiques), en introduisant le Chaos Polynomial généralisé itératif. Ce chapitre comporte également l'analyse numérique complète de cette nouvelle méthode. Le chapitre 3 a fait l'objet d'une publication dans Communication in Computational Physics, celle-ci a récemment été acceptée. Il fait l'état de l'art des méthodes d'inversion probabilistes et focalise sur l'inférence bayesienne. Il traite enfin de la possibilité d'accélérer la convergence de cette inférence en utilisant les méthodes spectrales décrites au chapitre précédent. La convergence théorique de la méthode d'accélération est démontrée et illustrée sur différents cas-test. Nous appliquons les méthodes et algorithmes des deux chapitres précédents à un problème complexe et ambitieux, un écoulement de gaz compressible physiquement instable (configuration tube à choc de Richtmyer-Meshkov) avec une analyse poussée des phénomènes physico-numériques en jeu. Enfin en annexe, nous présentons quelques pistes de recherche supplémentaires rapidement abordées au cours de cette thèse.
6

Transport optimal incompressible : dépendance aux données et régularisation entropique / Incompressible optimal transport : dependence to the data and entropic regularization

Baradat, Aymeric 17 June 2019 (has links)
Cette thèse porte sur le problème de transport optimal incompressible, un problème introduit par Brenier à la fin des années 80 dans le but de décrire l’évolution d’un fluide incompressible et non-visqueux de façon lagrangienne, ou autrement dit en fixant l’état initial et l’état final de ce fluide, et en minimisant une certaine fonctionnelle sur un ensemble de dynamiques admissibles. Ce manuscrit contient deux parties.Dans la première, on étudie la dépendance du problème de transport optimal incompressible par rapport aux données. Plus précisément, on étudie la dépendance du champ de pression (le multiplicateur de Lagrange associé à la contrainte d’incompressibilité) par rapport à la mesure γ prescrivant l’état initial et l’état final du fluide. On montre au Chapitre 2 par des méthodes variationnelles que le gradient de la pression, en tant qu’élément d’un espace proche du dual des fonctions C^1, dépend de γ de façon hölderienne pour la distance de Monge-Kantorovic. En contrepartie, on montre au Chapitre 4 que pour tout r > 1, le champ de pression dans l'espace de Lebesgue L^r_t L^1_x ne peut pas être une fonction lipschitzienne de γ. Ce résultat est lié au caractère mal-posé de l’équation d’Euler cinétique, une équation cinétique s’interprétant comme l’équation d’optimalité dans le problème de transport optimal incompressible, à laquelle le Chapitre 3 de cette thèse est dédié.Dans une seconde partie, on s’intéresse à la régularisation entropique du problème de transport optimal incompressible, introduit par Arnaudon, Cruzeiro, Léonard et Zambrini en 2017 sous le nom de problème de Brödinger. On prouve au Chapitre 5 que comme dans le cas du transport optimal incompressible, on peut associer à toute solution un champ scalaire de pression agissant comme multiplicateur de Lagrange pour la contrainte d’incompressibilité. On montre ensuite au Chapitre 6 que lorsque le paramètre de régularisation tend vers zéro, le problème de Brödinger converge vers le problème de transport optimal incompressible au sens de la Γ-convergence, et avec convergence des champs de pression. Ce dernier chapitre est issu d'un travail effectué en collaboration avec L. Monsaingeon. / This thesis focuses on Incompressible Optimal Transport, a minimization problem introduced by Brenier in the late 80's, aiming at describing the evolution of an incompressible and inviscid fluid in a Lagrangian way , i.e. by prescribing the state of the fluid at the initial and final times and by minimizing some functional among the set of admissible dynamics. This text is divided into two parts.In the first part, we study the dependence of this optimization problem with respect to the data. More precisely, we analyse the dependence of the pressure field, the Lagrange multiplier corresponding to the incompressibility constraint, with respect to the endpoint conditions, described by a probability measure γ determining the state of the fluid at the initial and final times. We show in Chapter 2 by purely variational methods that the gradient of the pressure field, as an element of a space that is close to the dual of C^1, is a Hölder continuous function of γ for the Monge-Kantorovic distance. On the other hand, we prove in Chapter 4 that for all r>1 the pressure field, as an element of L^r_t L^1_x, cannot be a Lipschitz continuous function of γ for the Monge-Kantorovic distance. This last statement is linked to an ill-posedness result proved in Chapter 3 for the so-called kinetic Euler equation, a kinetic PDE interpreted as the optimality equation of the Incompressible Optimal Transport problem.In the second part, we are interested in the entropic regularization of the Incompressible Optimal Transport problem: the so-called Brödinger problem, introduced by Arnaudon, Cruzeiro, Léonard and Zambrini in 2017. On the one hand, we prove in Chapter 5 that similarly to what happens in the Incompressible Optimal Transport case, to a solution always corresponds a scalar pressure field acting as the Lagrange multiplier for the incompressibility constraint. On the other hand, we prove in Chapter 6 that when the diffusivity coefficient tends to zero, the Brödinger problem converges towards the Incompressible Optimal Transport problem in the sense of Gamma-convergence, and with convergence of the pressure fields. The results of Chapter 6 come from a joint work with L. Monsaingeon.
7

Études sur l'application de méthodes géométriques en hydrodynamique

Major, Olivier January 2001 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
8

Reconstruction de pare-brises

Dion-St-Germain, Antoine 09 1900 (has links)
Ce mémoire présente une méthode de reconstruction de la surface d’un pare-brise à partir d’une image observée au travers de celui-ci. Cette image est déformée, car les rayons lumineux traversant le pare-brise subissent deux réfractions : une de chaque côté du verre. La déformation de l’image est dépendante de la forme du pare-brise, c’est donc cette donnée qui est utilisée pour résoudre le problème. La première étape est la construction d’un champ de vecteurs dans l’espace ambiant à partir des déviations des rayons lumineux passant par le pare-brise. Elle repose sur la loi de la réfraction de Snell-Descartes et sur des hypothèses simplificatrices au sujet de la courbure et de l’épaisseur du pare-brise. Le vecteur en un point de ce champ correspond à une prédiction du vecteur normal à la surface, sous l’hypothèse que celle-ci passe par le point en question. La deuxième étape est de trouver une surface compatible avec le champ de vecteurs obtenu. Pour y arriver, on formule un problème de minimisation où la donnée minimisée est la différence entre les vecteurs normaux à la surface et ceux construits à partir des mesures du système d’inspection. Il en résulte une équation d’Euler-Lagrange non linéaire à laquelle on impose des conditions de Dirichlet. Le graphe de la solution à ce problème est alors la surface recherchée. La troisième étape est une méthode de point fixe pour résoudre l’équation d’Euler-Lagrange. Elle donne une suite d’équations de Poisson linéaires dont la limite des solutions respecte l’équation non linéaire étudiée. On utilise le théorème du point fixe de Banach pour obtenir des conditions suffisantes d’existence et d’unicité de la solution, qui sont aussi des conditions suffisantes pour lesquelles la méthode de point fixe converge. / This Master’s thesis presents a method for the reconstruction of a windshield surface using an image observed through it. This image is distorted because the light rays passing through the windshield undergo two refractions : one on each side of the glass. The distortion depends on the windshield shape and therefore this data is used to solve the problem. The first step is the construction of a vector field in the ambient space, from the deviations of the light rays passing through the windshield. This step relies on the Snell-Descartes refraction law and on simplifying assumptions regarding the curvature and thickness of a windshield. A vector at a point of this field corresponds to a prediction of the surface normal vector at this point, under the hypothesis that this point lies on the surface. The second step is to find a surface that is compatible with the obtained vector field. For this purpose, a minimisation problem is formulated for which the minimized variable is the difference between the surface normal vector and the one deduced from the system’s measurements. This leads to a nonlinear Euler- Lagrange equation for which the Dirichlet boundary conditions are imposed. The graph of the solution is the desired surface. The third step is a fixed-point method to solve the Euler- Lagrange equation. At the center of this method is a sequence of linear Poisson equations, each giving an approximating solution. It is shown that the limit of this sequence of solutions respects the original nonlinear equation. The Banach fixed-point theorem is used to get sufficient existence and uniqueness conditions, that are also sufficient conditions under which the proposed fixed-point method converges.
9

Contributions au calcul des variations et au principe du maximum de Pontryagin en calculs time scale et fractionnaire / Contributions to calculus of variations and to Pontryagin maximum principle in time scale calculus and fractional calculus

Bourdin, Loïc 18 June 2013 (has links)
Cette thèse est une contribution au calcul des variations et à la théorie du contrôle optimal dans les cadres discret, plus généralement time scale, et fractionnaire. Ces deux domaines ont récemment connu un développement considérable dû pour l’un à son application en informatique et pour l’autre à son essor dans des problèmes physiques de diffusion anormale. Que ce soit dans le cadre time scale ou dans le cadre fractionnaire, nos objectifs sont de : a) développer un calcul des variations et étendre quelques résultats classiques (voir plus bas); b) établir un principe du maximum de Pontryagin (PMP en abrégé) pour des problèmes de contrôle optimal. Dans ce but, nous généralisons plusieurs méthodes variationnelles usuelles, allant du simple calcul des variations au principe variationnel d’Ekeland (couplé avec la technique des variations-aiguilles), en passant par l’étude d’invariances variationnelles par des groupes de transformations. Les démonstrations des PMPs nous amènent également à employer des théorèmes de point fixe et à prendre en considération la technique des multiplicateurs de Lagrange ou encore une méthode basée sur un théorème d’inversion locale conique. Ce manuscrit est donc composé de deux parties : la Partie 1 traite de problèmes variationnels posés sur time scale et la Partie 2 est consacrée à leurs pendants fractionnaires. Dans chacune de ces deux parties, nous suivons l’organisation suivante : 1. détermination de l’équation d’Euler-Lagrange caractérisant les points critiques d’une fonctionnelle Lagrangienne ; 2. énoncé d’un théorème de type Noether assurant l’existence d’une constante de mouvement pour les équations d’Euler-Lagrange admettant une symétrie ; 3. énoncé d’un théorème de type Tonelli assurant l’existence d’un minimiseur pour une fonctionnelle Lagrangienne et donc, par la même occasion, d’une solution pour l’équation d’Euler-Lagrange associée (uniquement en Partie 2) ; 4. énoncé d’un PMP (version forte en Partie 1, version faible en Partie 2) donnant une condition nécessaire pour les trajectoires qui sont solutions de problèmes de contrôle optimal généraux non-linéaires ; 5. détermination d’une condition de type Helmholtz caractérisant les équations provenant d’un calcul des variations (uniquement en Partie 1 et uniquement dans les cas purement continu et purement discret). Des théorèmes de type Cauchy-Lipschitz nécessaires à l’étude de problèmes de contrôle optimal sont démontrés en Annexe. / This dissertation deals with the mathematical fields called calculus of variations and optimal control theory. More precisely, we develop some aspects of these two domains in discrete, more generally time scale, and fractional frameworks. Indeed, these two settings have recently experience a significant development due to its applications in computing for the first one and to its emergence in physical contexts of anomalous diffusion for the second one. In both frameworks, our goals are: a) to develop a calculus of variations and extend some classical results (see below); b) to state a Pontryagin maximum principle (denoted in short PMP) for optimal control problems. Towards these purposes, we generalize several classical variational methods, including the Ekeland’s variational principle (combined with needle-like variations) as well as variational invariances via the action of groups of transformations. Furthermore, the investigations for PMPs lead us to use fixed point theorems and to consider the Lagrange multiplier technique and a method based on a conic implicit function theorem. This manuscript is made up of two parts : Part A deals with variational problems on time scale and Part B is devoted to their fractional analogues. In each of these parts, we follow (with minor differences) the following organization: 1. obtaining of an Euler-Lagrange equation characterizing the critical points of a Lagrangian functional; 2. statement of a Noether-type theorem ensuring the existence of a constant of motion for Euler-Lagrange equations admitting a symmetry;3. statement of a Tonelli-type theorem ensuring the existence of a minimizer for a Lagrangian functional and, consequently, of a solution for the corresponding Euler-Lagrange equation (only in Part B); 4. statement of a PMP (strong version in Part A and weak version in Part B) giving a necessary condition for the solutions of general nonlinear optimal control problems; 5. obtaining of a Helmholtz condition characterizing the equations deriving from a calculus of variations (only in Part A and only in the purely continuous and purely discrete cases). Some Picard-Lindelöf type theorems necessary for the analysis of optimal control problems are obtained in Appendices.

Page generated in 0.108 seconds