• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 12
  • 11
  • 10
  • 4
  • 1
  • 1
  • Tagged with
  • 103
  • 103
  • 29
  • 29
  • 25
  • 23
  • 19
  • 18
  • 16
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Blow-up of Solutions to the Generalized Inviscid Proudman-Johnson Equation

Sarria, Alejandro 15 December 2012 (has links)
The generalized inviscid Proudman-Johnson equation serves as a model for n-dimensional incompressible Euler flow, gas dynamics, high-frequency waves in shallow waters, and orientation of waves in a massive director field of a nematic liquid crystal. Furthermore, the equation also serves as a tool for studying the role that the natural fluid processes of convection and stretching play in the formation of spontaneous singularities, or of their absence. In this work, we study blow-up, and blow-up properties, in solutions to the generalized, inviscid Proudman-Johnson equation endowed with periodic or Dirichlet boundary conditions. More particularly,regularity of solutions in an Lp setting will be measured via a direct approach which involves the derivation of representation formulae for solutions to the problem. For a real parameter lambda, several classes of initial data are considered. These include the class of smooth functions with either zero or nonzero mean, a family of piecewise constant functions, and a large class of initial data with a bounded derivative that is, at least, continuous almost everywhere and satisfies Holder-type estimates near particular locations in the domain. Amongst other results, our analysis will indicate that for appropriate values of the parameter, the curvature of the data in a neighborhood of these locations is responsible for an eventual breakdown of solutions, or their persistence for all time. Additionally, we will establish a nontrivial connection between the qualitative properties of L-infinity blow-up in ux, and its Lp regularity. Finally, for smooth and non-smooth initial data, a special emphasis is made on the study of regularity of stagnation point-form solutions to the two and three dimensional incompressible Euler equations subject to periodic or Dirichlet boundary conditions.
22

Modelling the Shuttle Movement of a Seismic Airgun

Lindeberg, Ludvig January 2019 (has links)
A provably stable and high-order accurate semi-discrete finite difference scheme modeling the shuttle movement of a seismic airgun is derived using the SBP-SAT method. The one dimensional airgun model studied consists of two pressurized compartments separated by a moving shuttle. The air inside the compartments is modeled by the compressible Euler equations, whereas the shuttle movement is governed by the pressure difference across the shuttle. Well-posedness for the continuous problem and stability for the numerical scheme is proven using the energy method. Numerical studies verify accuracy and convergence.
23

Une étude mathématique des équations aux dérivées partielles non linéaires présentant des solutions irrégulières / A mathematical study of nonlinear partial differential equations exibiting irregular solutions

Colombeau, Mathilde 25 November 2011 (has links)
Cette thèse à pour objet l'étude théorique et numérique de solutions dans les équations aux dérivées partielles non linéaires de la physique, en particulier en dynamique des fluides. La présence de discontinuités dans les solutions de ces équations complique la compréhension mathématique des phénomènes mis enjeu et leur traitement numérique, notamment en vue de simulations informatiques . Nous étudions ces équations par une méthode de régularisation dans un espace fonctionnel approprié. Lorsque des schémas numériques construits par des méthodes différentes conduisent à des résultats identiques, ceci jusque dans leurs moindres détails, il semble alors naturel de s'interroger dans quelle mesure ces suites de solutions numériques constituent une approximation d'une solution des équations étudiées. Nous construisons des suites de solutions approchées à partir d'un schéma numérique original,stable et suffisamment simple pour démontrer que ses suites constituent une méthode asymptotique de Maslov au sens des distributions en dimension trois d'espèce. La technique de régularisation employée consiste à étendre les variables réelles du problème ne des variables complexes, ce qui nous permet de construire des familles de solutions particulières que l'on ramène au cas réel en faisant tendre un petit paramètre vers O. Les solutions physiques recherchées apparaissent alors comme valeurs au bord de fonction holomorphes. Nous illustrons les résultats obtenus par des applications en cosmologie dans les cadres Newtoniens et relativistes pour des systèmes sans pression, puis avec pression et auto-gravitation, ainsi que pour le système des gaz parfaits. / This thesis is devoted to the theoretical and numerical study of singular solutions appearing in nonlinear partial differential complicates the mathematical understanding of the phenomena under concem as well as their numerical treatment, in particular in view of computation. These equations are studied by a regularization method in an appropriate functional space. When completely different numerical methods give the same results up to the smallest details one can reasonably expect that these numerical results suggest the existence of a mathematical solution of theses equations. We construct sequences of approximate solutions from an original numerical scheme, which is stable and simple enough to prove that these sequences constitute a Maslov asymptotic method in three space dimension. The regularization technique in use consits in extending the real variables of the problem into complex ones, which perrnits to construct families of particular equations that we bring back to the real case by letting a small paramater tend to zero. The expected physical solutions appear as boundary values of holomorphie functions . Illustrations are given by applications to cosmology in the Newtorian and re1ativistic settings for pressure1ess fluid dynamics, then in presence of self-gravitation and pressure as weil as for the systemof ideal gases
24

Well-balanced Central-upwind Schemes

January 2015 (has links)
Flux gradient terms and source terms are two fundamental components of hyperbolic systems of balance law. Though having distinct mathematical natures, they form and maintain an exact balance in a special class of solutions, which are called steady-state solutions. In this dissertation, we are interested in the construction of well-balanced schemes, which are the numerical methods for hyperbolic systems of balance laws that are capable of exactly preserving steady-state solutions on the discrete level. We first introduce a well-balanced scheme for the Euler equations of gas dynamics with gravitation. The well-balanced property of the designed scheme hinges on a reconstruction process applied to equilibrium variables---the quantities that stay constant at steady states. In addition, the amount of numerical viscosity is reduced in the areas where the flow is in (near) steady-state regime, so that the numerical solutions under consideration can be evolved in a well-balanced manner. We then consider the shallow water equations with friction terms, which become very stiff when the water height is close to zero. The stiffness in the friction terms introduces additional difficulty for designing an efficient well-balanced scheme. If treated explicitly, the stiff friction terms impose a severe restriction on the time step. On the other hand, a straightforward (semi-) implicit treatment of the stiff friction terms can greatly enhance the efficiency, but will break the well-balanced property of the resulting scheme. To this end, we develop a new semi-implicit Runge-Kutta time integration method that is capable of maintaining the well-balanced property under the time step restriction determined exclusively by non-stiff components in the underlying equations. The well-balanced property of our schemes are tested and verified by extensive numerical simulations, and notably, the obtained numerical results clearly indicate that the well-balanced property plays an important role in achieving high resolutions when a coarse grid is used. / acase@tulane.edu
25

Development of a High-order Finite-volume Method for the Navier-Stokes Equations in Three Dimensions

Rashad, Ramy 04 March 2010 (has links)
The continued research and development of high-order methods in Computational Fluid Dynamics (CFD) is primarily motivated by their potential to significantly reduce the computational cost and memory usage required to obtain a solution to a desired level of accuracy. In this work, a high-order Central Essentially Non-Oscillatory (CENO) finite-volume scheme is developed for the Euler and Navier-Stokes equations in three dimensions. The proposed CENO scheme is based on a hybrid solution reconstruction procedure using a fixed central stencil. A solution smoothness indicator facilitates the hybrid switching between a high-order k-exact reconstruction technique, and a monotonicity preserving limited piecewise linear reconstruction algorithm. The resulting scheme is applied to the compressible forms of the Euler and Navier-Stokes equations in three dimensions. The latter of which includes the application of this high-order work to the Large Eddy Simulation (LES) of turbulent non-reacting flows.
26

Development of a High-order Finite-volume Method for the Navier-Stokes Equations in Three Dimensions

Rashad, Ramy 04 March 2010 (has links)
The continued research and development of high-order methods in Computational Fluid Dynamics (CFD) is primarily motivated by their potential to significantly reduce the computational cost and memory usage required to obtain a solution to a desired level of accuracy. In this work, a high-order Central Essentially Non-Oscillatory (CENO) finite-volume scheme is developed for the Euler and Navier-Stokes equations in three dimensions. The proposed CENO scheme is based on a hybrid solution reconstruction procedure using a fixed central stencil. A solution smoothness indicator facilitates the hybrid switching between a high-order k-exact reconstruction technique, and a monotonicity preserving limited piecewise linear reconstruction algorithm. The resulting scheme is applied to the compressible forms of the Euler and Navier-Stokes equations in three dimensions. The latter of which includes the application of this high-order work to the Large Eddy Simulation (LES) of turbulent non-reacting flows.
27

Shock capturing for discontinuous galerkin methods

Casoni Rero, Eva 14 October 2011 (has links)
Aquesta tesi doctoral proposa formulacions de Galerkin Discontinu (DG) d’alt ordre per la captura de shocks, obtenint alhora solucions altament precises per problemes de flux compressible. En les últimes dècades, la investigació en els mètodes de DG ha estat en constant creixement. L'èxit dels mètodes DG en problemes hiperbòlics ha conduit el seu desenvolupament en lleis de conservació no lineals i problemes de convecció dominant. Entre els avantatges dels mètodes DG, destaquen la seva estabilitat inherent i les propietats locals de conservació. D'altra banda, els mètodes DG estan especialment dissenyats per l’ús aproximacions d'ordre superior. De fet, en els últims anys s'ha demostrat que la resolució de problemes de convecció dominant ja no es restringeix només a elements d'ordre inferior. De fet, es necessiten models numèrics d'alta precisió per aconseguir prediccions altament fiables dins la dinàmica de fluids computacional (CFD). En aquest context es presenten i discuteixen dos tècniques de captura de shocks. En primer lloc, es presenta una tècnica novedosa i senzilla basada en la introducció d'una nova base de funcions de forma. Aquesta base té la capacitat de canviar a nivell local entre una interpolació contínua o discontínua, depenent de la suavitat de la funció que es vol aproximar. En presència de xocs, les discontinuïtats introduïdes dins l’element permeten incloure l'estabilització necessària gràcies a l’ús dels fluxos numèrics, i alhora exploten les propietats intrínsiques del mètodes DG. En conseqüència, es poden utilitzar malles grolleres amb elements d’ordre superior. Amb aquestes discretitzacions i, utilitzant el mètode proposats, els xocs queden continguts a l’interior de l’element i per tant, és possible evitar l’ús de tècniques de refinament adaptatiu de la malla, alhora que es manté la localitat i compacitat dels esquemes DG. En segon lloc, es proposa una tècnica clàssica i, aparentment simple: la introducció de la viscositat artificial. Primerament es realitza un estudi detallat per al cas unidimensional. S’obté una viscositat d’alta precisió que escala segons el valor hk amb 1 ≤ k ≤ p i essent h la mida de l’element. En conseqüència, s’obté un xoc amb amplitud del mateix ordre. Seguidament, l'estudi de la viscositat unidimensional obtenida s'extén al cas multidimensional per a malles triangulars. L'extensió es basa en la projecció de la viscositat unidimensional en unes determinades direccions espacials dins l’element. Es demostra de manera consistent que la viscositat introduïda és, com a molt, del mateix ordre que la resolució donada per la discretització espacial, és a dir, h/p. El mètode és especialment eficient per aproximacions de Galerkin discontinu d’alt ordre, per exemple p≥ 3. Les dues metodologies es validen mitjançant una àmplia selecció d’exemples numèrics. En alguns exemples, els mètodes proposats permeten una reducció en el nombre de graus de llibertat necessaris per capturar xocs acuradament de fins i tot un ordre de magnitud, en comparació amb mètodes estàndar de refinament adaptatiu amb aproximacions de baix ordre. / This thesis proposes shock-capturing methods for high-order Discontinuous Galerkin (DG) formulations providing highly accurate solutions for compressible flows. In the last decades, research in DG methods has been very active. The success of DG in hyperbolic problems has driven many studies for nonlinear conservation laws and convection-dominated problems. Among all the advantages of DG, their inherent stability and local conservation properties are relevant. Moreover, DG methods are naturally suited for high-order approximations. Actually, in recent years it has been shown that convection-dominated problems are no longer restricted to low-order elements. In fact, highly accurate numerical models for High-Fidelity predictions in CFD are necessary. Under this rationale, two shock-capturing techniques are presented and discussed. First, a novel and simple technique based on on the introduction of a new basis of shape functions is presented. It has the ability to change locally between a continuous or discontinuous interpolation depending on the smoothness of the approximated function. In the presence of shocks, the new discontinuities inside an element introduce the required stabilization thanks to the numerical fluxes, thus exploiting DG inherent properties. Large high-order elements can therefore be used and shocks are captured within a single element, avoiding adaptive mesh refinement and preserving the locality and compactness of the DG scheme. Second, a classical and, apparently simple, technique is advocated: the introduction of artificial viscosity. First, a one-dimensional study is perfomed. Viscosity of the order O(hk) with 1≤ k≤ p is obtained, hence inducing a shock width of the same order. Second, the study extends the accurate one-dimensional viscosity to triangular multidimensional meshes. The extension is based on the projection of the one-dimensional viscosity into some characteristic spatial directions within the elements. It is consistently shown that the introduced viscosity scales, at most, withthe DG resolutions length scales, h/p. The method is especially reliable for highorder DG approximations, say p≥3. A wide range of different numerical tests validate both methodologies. In some examples the proposed methods allow to reduce by an order of magnitude the number of degrees of freedom necessary to accurately capture the shocks, compared to standard low order h-adaptive approaches.
28

Two-Dimensional Anisotropic Cartesian Mesh Adaptation for the Compressible Euler Equations

Keats, William A. January 2004 (has links)
Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This document discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for transient compressible flow. This technique, originally developed for laminar incompressible flow, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this document the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant.
29

Implementation Of Different Flux Evaluation Schemes Into A Two-dimensional Euler Solver

Eraslan, Elvan 01 September 2006 (has links) (PDF)
This study investigates the accuracy and efficiency of several flux splitting methods for the compressible, two-dimensional Euler equations. Steger-Warming flux vector splitting method, Van Leer flux vector splitting method, The Advection Upstream Splitting Method (AUSM), Artificially Upstream Flux Vector Splitting Scheme (AUFS) and Roe&rsquo / s flux difference splitting schemes were implemented using the first- and second-order reconstruction methods. Limiter functions were embedded to the second-order reconstruction methods. The flux splitting methods are applied to subsonic, transonic and supersonic flows over NACA0012 airfoil, as well as subsonic, transonic and supersonic flows in a channel. The comparison of the obtained results with each other and the ones in the literature is presented. The advantages and disadvantages of each scheme among others are identified.
30

Numerical Solution Of One Dimensional Detonation Tube With Reactive Euler Equations Using High Resolution Method

Ungun, Yigit 01 February 2012 (has links) (PDF)
In this thesis, numerical simulation of one dimensional detonation tube problem is solved with finite rate chemistry. For the numerical simulation, Euler equations have been used. Since detonation tube phenomena occurs in high speed flows, viscosity eects and gravity forces are negligible. In this thesis, Godunov type methods have been studied and afterwards high resolution method is used for the numerical solution of the detonation tube problem. To solve the chemistry aspect of the problem ZND theory have been used. For the numerical solution, a FORTRAN code is written and the numerical solution of the problems compared with the exact ZND solutions.

Page generated in 0.0739 seconds