• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • Tagged with
  • 21
  • 21
  • 16
  • 15
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded Systems

Pop, Traian January 2003 (has links)
Day by day, we are witnessing a considerable increase in number and range of applications which entail the use of embedded computer systems. This increase is closely followed by the growth in complexity of applications controlled by embedded systems, often involving strict timing requirements, like in the case of safety-critical applications. Efficient design of such complex systems requires powerful and accurate tools that support the designer from the early phases of the design process. This thesis focuses on the study of real-time distributed embedded systems and, in particular, we concentrate on a certain aspect of their real-time behavior and implementation: the time-triggered (TT) and event-triggered (ET) nature of the applications and of the communication protocols. Over the years, TT and ET systems have been usually considered independently, assuming that an application was entirely ET or TT. However, nowadays, the growing complexity of current applications has generated the need for intermixing TT and ET functionality. Such a development has led us to the identification of several interesting problems that are approached in this thesis. First, we focus on the elaboration of a holistic schedulability analysis for heterogeneous TT/ET task sets which interact according to a communication protocol based on both static and dynamic messages. Second, we use the holistic schedulability analysis in order to guide decisions during the design process. We propose a design optimisation heuristic that partitions the task-set and the messages into the TT and ET domains, maps and schedules the partitioned functionality, and optimises the communication protocol parameters. Experiments have been carried out in order to measure the efficiency of the proposed techniques.
12

Resource-Constrained Multi-Agent Control Systems: Dynamic Event-triggering, Input Saturation, and Connectivity Preservation

Yi, Xinlei January 2017 (has links)
978-91-7729-579-2A multi-agent system consists of multiple agents cooperating to achieve a common objective through local interactions. An important problem is how to reduce the amount of information exchanged, since agents in practice only have limited energy and communication resources. In this thesis, we propose dynamic event-triggered control strategies to solve consensus and formation problems for multi-agent systems under such resource constraints. In the first part, we propose dynamic event-triggered control strategies to solve the average consensus problem for first-order continuous-time multi-agent systems. It is proven that the state of each agent converges exponentially to the average of all agents' initial states under the proposed triggering laws if and only if the underlying undirected graph is connected.In the second part, we study the consensus problem with input saturation over directed graphs. It is shown that the underlying directed graph having a directed spanning tree is a necessary and sufficient condition for achieving consensus. Moreover, in order to reduce the overall need of communication and system updates, we propose an event-triggered control strategy to solve this problem. It is shown that consensus is achieved, again, if and only if the underlying directed graph has a directed spanning tree.In the third part, dynamic event-triggered formation control with connectivity preservation is investigated. Single and double integrator dynamics are considered. All agents are shown to converge to the formation exponentially with connectivity preservation.The effectiveness of the theoretical results in the thesis is verified by several numerical examples. / <p>QC 20171025</p>
13

Efficient and Adaptive Decentralized Sparse Gaussian Process Regression for Environmental Sampling Using Autonomous Vehicles

Norton, Tanner A. 27 June 2022 (has links)
In this thesis, I present a decentralized sparse Gaussian process regression (DSGPR) model with event-triggered, adaptive inducing points. This DSGPR model brings the advantages of sparse Gaussian process regression to a decentralized implementation. Being decentralized and sparse provides advantages that are ideal for multi-agent systems (MASs) performing environmental modeling. In this case, MASs need to model large amounts of information while having potential intermittent communication connections. Additionally, the model needs to correctly perform uncertainty propagation between autonomous agents and ensure high accuracy on the prediction. For the model to meet these requirements, a bounded and efficient real-time sparse Gaussian process regression (SGPR) model is needed. I improve real-time SGPR models in these regards by introducing an adaptation of the mean shift and fixed-width clustering algorithms called radial clustering. Radial clustering enables real-time SGPR models to have an adaptive number of inducing points through an efficient inducing point selection process. I show how this clustering approach scales better than other seminal Gaussian process regression (GPR) and SGPR models for real-time purposes while attaining similar prediction accuracy and uncertainty reduction performance. Furthermore, this thesis addresses common issues inherent in decentralized frameworks such as high computation costs, inter-agent message bandwidth restrictions, and data fusion integrity. These challenges are addressed in part through performing maximum consensus between local agent models which enables the MAS to gain the advantages of decentral- ization while keeping data fusion integrity. The inter-agent communication restrictions are addressed through the contribution of two message passing heuristics called the covariance reduction heuristic and the Bhattacharyya distance heuristic. These heuristics enable user to reduce message passing frequency and message size through the Bhattacharyya distance and properties of spatial kernels. The entire DSGPR framework is evaluated on multiple simulated random vector fields. The results show that this framework effectively estimates vector fields using multiple autonomous agents. This vector field is assumed to be a wind field; however, this framework may be applied to the estimation of other scalar or vector fields (e.g., fluids, magnetic fields, electricity, etc.).
14

Resource- and Time-Constrained Control Synthesis for Multi-Agent Systems

Yu, Pian January 2018 (has links)
Multi-agent systems are employed for a group of agents to achieve coordinated tasks, in which distributed sensing, computing, communication and control are usually integrated with shared resources. Efficient usage of these resources is therefore an important issue. In addition, in applications such as robotics, a group of agents may encounter the request of a sequence of tasks and deadline constraint on the completion of each task is a common requirement. Thus, the integration of multi-agent task scheduling and control synthesis is of great practical interest. In this thesis, we study control of multi-agent systems under a networked control system framework. The first purpose is to design resource-efficient communication and control strategies to solve consensus problem for multi-agent systems.The second purpose is to jointly schedule task sequence and design controllers for multiagent systems that are subject to a sequence of deadline-constrained tasks. In the first part, a distributed asynchronous event-triggered communication and control strategy is proposed to tackle multi-agent consensus. It is shown that the proposed event-triggered communication and control strategy fulfils the reduction of both the rates of sensor-controller communication and controller-actuator communication as well as excluding Zeno behavior. To further relax the requirement of continuous sensing and computing, a periodic event-triggered communication and control strategy is proposed in the second part. In addition, an observer-based encoder-decoder with finite-level quantizeris designed to deal with the constraint of limited data rate. An explicit formula for the maximum allowable sampling period is derived first. Then, it is proven that exponential consensus can be achieved in the presence of data rate constraint. Finally, in the third part, the problem of deadline-constrained multi-agent task scheduling and control synthesis is addressed. A dynamic scheduling strategy is proposed and a distributed hybrid control law is designed for each agent that guarantees the completion and deadline satisfaction of each task. The effectiveness of the theoretical results in the thesis is verified by several simulation examples. / <p>QC 20180918</p>
15

Non-periodic sampling schemes for control applications

Norgren, Tommy, Styrud, Jonathan January 2010 (has links)
In recent years, research in the field of automation has been advancing quickly in the direction of wireless networks of sensors and actuators. This development has introduced a need to reduce the amount of communication. A number of different alternative schemes have been proposed. They are usually divided into event-triggered schemes and self-triggered ones. The main purpose of this Master's thesis was to further develop and evaluate the sesampling schemes, focusing on their needed communication. The effect on control performance by the different schemes was also taken into account. Because of the difficulty in performing a theoretical comparison, the thesis focused on evaluating the schemes in simulations and in experiments on real industrial processes. The results indicate that simply using a slower periodic scheme may reduce as much communication without losing much performance as the more flexible schemes. This would imply that investing further into the other schemes may be of waste. However, using an event-triggered scheme with improvements introduced in this report may offer some advantages when it comes to performance and simplicity in setup. Maybe more importantly, it is safer during rapidly changing conditions, which also makes it very unlikely that a slow periodic sampler would ever be implemented on a real system. The results in general are very positive with communication reductions of over 90% when using a well tuned base sampling interval and over 99% when the comparison is made to current implementations in the industry, all without significant loss of performance.
16

Resource-Aware Decentralized Federated Learning over Heterogeneous Networks

Shahryar Zehtabi (19833777) 20 November 2024 (has links)
<p dir="ltr">A recent emphasis of distributed learning research has been on federated learning (FL), in which model training is conducted by the data-collecting devices. In traditional FL algorithms, trained models at the edge are periodically sent to a central server for aggregation, utilizing a star topology as the underlying communication graph. However, assuming access to a central coordinator is not always practical, e.g., in ad hoc wireless network settings, motivating efforts to fully decentralize FL. Consequently, Decentralized federated learning (DFL) captures FL settings where both (i) model updates and (ii) model aggregations are exclusively carried out by the clients without a central server. Inherent challenges due to distributed nature of FL training, i.e., data heterogeneity and resource heterogeneity, become even more prevalent in DFL since it lacks a central server as a coordinator. In this thesis, we present two algorithms for resource-aware DFL, which result in achieving an overall desired performance across the clients in shorter amount of time compared to existing conventional DFL algorithms which do not factor in the resource availability of clients in their approaches.</p><p dir="ltr"><br></p><p dir="ltr">In the first project, we propose EF-HC, a novel methodology for distributed model aggregations via asynchronous, event-triggered consensus iterations over the network graph topology. We consider personalized/heterogeneous communication event thresholds at each device that weigh the change in local model parameters against the available local resources in deciding whether an aggregation would be beneficial enough to incur a communication delay on the system. In the second project, we propose Decentralized Sporadic Federated Learning (DSpodFL), a DFL methodology built on a generalized notion of sporadicity in both local gradient and aggregation processes. DSpodFL subsumes many existing decentralized optimization methods under a unified algorithmic framework by modeling the per-iteration (i) occurrence of gradient descent at each client and (ii) exchange of models between client pairs as arbitrary indicator random variables, thus capturing heterogeneous and time-varying computation/communication scenarios. We analytically characterize the convergence behavior of both algorithms for strongly convex models using both a constant and a diminishing learning rate, under mild assumptions on the communication graph connectivity, data heterogeneity across clients, and gradient noises. In DSpodFL, we do the same for non-convex models as well. Our numerical experiments demonstrate that both EF-HC and DSpodFL consistently achieve improved training speeds compared with baselines under various system settings.</p>
17

Output feedback event-triggered control / Commande par retour de sortie à transmissions évènementielles

Abdelrahim, Mahmoud 23 July 2014 (has links)
La commande à transmissions événementielles est une approche dans laquelle les instants de transmission sont définis selon un critère dépendant de l'état du système et non plus d'une horloge à l'instar des implantations périodiques. Dans cette thèse, nous nous concentrons sur la synthèse de telles lois de commande par retour de sortie. Les contributions sont les suivantes : (i) nous proposons une méthode de synthèse dite par émulation pour des systèmes non linéaires; (ii) nous présentons une méthode de synthèse jointe de la loi de commande et de la condition de déclenchement pour les systèmes linéaires; (iii) nous nous intéressons au cas de systèmes non linéaires singulièrement perturbés et nous construisons le contrôleur à partir d’approximation de la dynamique lente uniquement. / Event-triggered control is a sampling paradigm in which the sequence of transmission instants is determined based on the violation of a state-dependent criterion and not a time-driven clock. In this thesis, we deal with event-triggered output-based controllers to stabilize classes of nonlinear systems. The contributions of the presented material are threefold: (i) we stabilize a class of nonlinear systems by using an emulation-based approach; (ii) we develop a co-design procedure to simultaneously design the output feedback law and the event-triggering condition for linear systems; (iii) we propose stabilizing event-triggered controllers for nonlinear systems whose dynamics have two-time scales (in particular, we only rely on the knowledge of an approximate model of the slow dynamics)
18

Fast, Reliable, Low-power Wireless Monitoring and Control with Concurrent Transmissions

Trobinger, Matteo 27 July 2021 (has links)
Low-power wireless technology is a part and parcel of our daily life, shaping the way in which we behave, interact, and more generally live. The ubiquity of cheap, tiny, battery-powered devices augmented with sensing, actuation, and wireless communication capabilities has given rise to a ``smart" society, where people, machines, and objects are seamlessly interconnected, among themselves and with the environment. Behind the scenes, low-power wireless protocols are what enables and rules all interactions, organising these embedded devices into wireless networks, and orchestrating their communications. The recent years have witnessed a persistent increase in the pervasiveness and impact of low-power wireless. After having spawned a wide spectrum of powerful applications in the consumer domain, low-power wireless solutions are extending their influence over the industrial context, where their adoption as part of feedback control loops is envisioned to revolutionise the production process, paving the way for the Fourth Industrial Revolution. However, as the scale and relevance of low-power wireless systems continue to grow, so do the challenges posed to the communication substrates, required to satisfy ever more strict requirements in terms of reliability, responsiveness, and energy consumption. Harmonising these conflicting demands is far beyond what is enabled by current network stacks and control architectures; the need to timely bridge this gap has spurred a new wave of interest in low-power wireless networking, and directly motivated our work. In this thesis, we take on this challenge with a main conceptual and technical tool: concurrent transmissions (CTX), a technique that, by enforcing nodes to transmit concurrently, has been shown to unlock unprecedented fast, reliable, and energy efficient multi-hop communications in low-power wireless networks, opening new opportunities for protocol design. We first direct our research endeavour towards industrial applications, focusing on the popular IEEE 802.15.4 narrowband PHY layer, and advance the state of the art along two different directions: interference resilience and aperiodic wireless control. We tackle radio-frequency noise by extensively analysing, for the first time, the dependability of CTX under different types, intensities, and distributions of reproducible interference patterns, and by devising techniques to push it further. Specifically, we concentrate on CRYSTAL, a recently proposed communication protocol that relies on CTX to rapidly and dependably collect aperiodic traffic. By integrating channel hopping and noise detection in the protocol operation, we provide a novel communication stack capable of supporting aperiodic transmissions with near-perfect reliability and a per-mille radio duty cycle despite harsh external interference. These results lay the ground towards the exploitation of CTX for aperiodic wireless control; we explore this research direction by co-designing the Wireless Control Bus (WCB), our second contribution. WCB is a clean-slate CTX-based communication stack tailored to event-triggered control (ETC), an aperiodic control strategy holding the capability to significantly improve the efficiency of wireless control systems, but whose real-world impact has been hampered by the lack of appropriate networking support. Operating in conjunction with ETC, WCB timely and dynamically adapts the network operation to the control demands, unlocking an order-of-magnitude reduction in energy costs w.r.t. traditional periodic approaches while retaining the same control performance, therefore unleashing and concretely demonstrating the true ETC potential for the first time. Nevertheless, low-power wireless communications are rapidly evolving, and new radios striking novel trade-offs are emerging. Among these, in the second part of the thesis we focus on ultra-wideband (UWB). By providing hitherto missing networking primitives for multi-hop dissemination and collection over UWB, we shed light on the communication potentialities opened up by the high data throughput, clock precision, and noise resilience offered by this technology. Specifically, as a third contribution, we demonstrate that CTX not only can be successfully exploited for multi-hop UWB communications but, once embodied in a full-fledged system, provide reliability and energy performance akin to narrowband. Furthermore, the higher data rate and clock resolution of UWB chips unlock up to 80% latency reduction w.r.t. narrowband CTX, along with orders-of-magnitude improvements in network-wide time synchronization. These results showcase how UWB CTX could significantly benefit a multitude of applications, notably including low-power wireless control. With WEAVER, our last contribution, we make an additional step towards this direction, by supporting the key functionality of data collection with an ultra-fast convergecast stack for UWB. Challenging the internal mechanics of CTX, WEAVER interleaves data and acknowledgements flows in a single, self-terminating network-wide flood, enabling the concurrent collection of different packets from multiple senders with unprecedented latency, reliability, and energy efficiency. Overall, this thesis pushes forward the applicability and performance of low-power wireless, by contributing techniques and protocols to enhance the dependability, timeliness, energy efficiency, and interference resilience of this technology. Our research is characterized by a strong experimental slant, where the design of the systems we propose meets the reality of testbed experiments and evaluation. Via our open-source implementations, researchers and practitioners can directly use, extend, and build upon our contributions, fostering future work and research on the topic.
19

Design and implementation of event-based multi-rate controllers for networked control systems

Alcaina Acosta, José Joaquín 21 January 2021 (has links)
Tesis por compendio / [ES] Con esta tesis se pretende dar solución a algunos de los problemas más habituales que aparecen en los Sistemas de control basados en red (NCS) como son los retardos variables en el tiempo, las pérdidas y el desorden de paquetes, y la restricción de ancho de banda y de recursos computacionales y energéticos de los dispositivos que forman parte del sistema de control. Para ello se ha planteado la integración de técnicas de control multifrecuencial, de control basado en paquetes, de control basado en predictor y de control basado en eventos. Los diseños de control realizados se han simulado utilizando Matlab-Simulink y Truetime, se ha analizado su estabilidad mediante LMIs y QFT, y se han validado experimentalmente en un péndulo invertido, un robot cartesiano 3D y en robots móviles de bajo coste. El artículo 1 aborda el control basado en eventos, el cual minimiza el ancho de banda consumido en el NCS mediante un control basado en eventos periódicos y presenta un método para obtener sus parámetros óptimos para el sistema específico en que se utilice. Los artículos 2, 4 y 6 añaden el control basado en paquetes, así como el control multifrecuencia, que aborda problemas de falta de datos por bajo uso del sensor y los retardos, pérdidas y desórdenes de paquetes en la red. También afrontan, mediante tecnicas de predicción basadas en un filtro de Kalman multifrecuencia variable en el tiempo, los problemas de ruido y perturbaciones, así como la observación de los estados completos del sistema. El artículo 7 hace frente a un modelo no lineal que utiliza las anteriores soluciones junto con un filtro de Kalman extendido para presentar otro tipo de estructura para un vehículo autónomo que, gracias a la información futura obtenida mediante estas técnicas, puede realizar de forma remota tareas de alto nivel como es la toma de decisiones y la monitorización de variables. Los artículos 3 y 5, presentan una forma de obtener y analizar la respuesta en frecuencia de sistemas SISO multifrecuencia y estudian su comportamiento ante ciertas incertidumbres o problemas en la red haciendo uso de procedimientos QFT. / [CA] Amb aquesta tesi es pretén donar solució a alguns dels problemes més habituals que apareixen als Sistemes de Control Basats en xarxa (NCS) com son els retards d'accés i transferència variables en el temps, les pèrdues y desordenament de paquets, i la restricció d'ampli de banda així com de recursos computacionals i energètics dels dispositius que foment part del sistema de control. Per tal de resoldre'ls s'ha plantejat la integració de tècniques de control multifreqüencial, de control basat en paquets, de control basat en predictor i de control basat en events. Els dissenys de control realitzats s'han simulat fent ús de Matlab-Simulink i de TrueTime, s'ha analitzat la seua estabilitat mitjançant LMIs i QFT, i s'han validat experimentalment en un pèndul invertit, un robot cartesià 3D i en robots mòbils de baix cost. L'article 1 aborda el control basat en events, el qual minimitza l'ampli de banda consumit a l'NCS mitjançant un control basat en events periòdics i presenta un mètode per a obtindré els seus paràmetres òptims per al sistema específic en el qual s'utilitza. Els articles 2, 4 i 6 afegeixen el control basat en paquets, així com el control multifreqüència, que aborda problemes de falta de dades per el baix us del sensor i els retards, pèrdues i desordre de paquets en la xarxa. També afronten, mitjançant tècniques de predicció basades en un filtre de Kalman multifreqüència variable en el temps. Els problemes de soroll i pertorbacions, així com la observació dels estats complets del sistema. L'article 7 fa referència a un model no lineal que utilitza les anteriors solucions junt a un filtre de Kalman estès per a presentar altre tipus d'estructura per a un vehicle autònom que, gracies a la informació futura obtinguda mitjançant aquestes tècniques, pot realitzar de manera remota tasques d'alt nivell com son la presa de decisions i la monitorització de variables. Els articles 3 y 5 presenten la manera d'obtindre i analitzar la resposta en frequencia de sistemes SISO multifreqüència i estudien el seu comportament front a certes incerteses o problemes en la xarxa fent us de procediments QFT. / [EN] This thesis attempts to solve some of the most frequent issues that appear in Networked Control Systems (NCS), such as time-varying delays, packet losses and packet disorders and the bandwidth limitation. Other frequent problems are scarce computational and energy resources of the local system devices. Thus, it is proposed to integrate multirate control, packet-based control, predictor-based control and event-based control techniques. The control designs have been simulated using Matlab-Simulink and Truetime, the stability has been analysed by LMIs and QFT, and the experimental validation has been done on an inverted pendulum, a 3D cartesian robot and in low-cost mobile robots. Paper 1 addresses event-based control, which minimizes the bandwidth consumed in NCS through a periodic event-triggered control and presents a method to obtain the optimal parameters for the specific system used. Papers 2, 4 and 6 include packet-based control and multirate control, addressing problems such as network delays, packet dropouts and packet disorders, and the scarce data due to low sensor usage in order to save battery in sensing tasks and transmissions of the sensed data. Also addressed, is how despite the existence of measurement noise and disturbances, time-varying dual-rate Kalman filter based prediction techniques observe the complete state of the system. Paper 7 tackles a non-linear model that uses all the previous solutions together with an extended Kalman filter to present another type of structure for an autonomous vehicle that, due to future information obtained through these techniques, can remotely carry out high level tasks, such as decision making and monitoring of variables. Papers 3 and 5, present a method for obtaining and analyzing the SISO dual-rate frequency response and using QFT procedures to study its behavior when faced with specific uncertainties or network problems. / This work was supported by the Spanish Ministerio de Economía y Competitividad under Grant referenced TEC2012-31506. / Alcaina Acosta, JJ. (2020). Design and implementation of event-based multi-rate controllers for networked control systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159884 / Compendio
20

Design, Implementation and Validation of Resource-Aware and Resilient Wireless Networked Control Systems

Araújo, José January 2014 (has links)
Networked control over wireless networks is of growing importance in many application domains such as industrial control, building automation and transportation systems. Wide deployment however, requires systematic design tools to enable efficient resource usage while guaranteeing close-loop control performance. The control system may be greatly affected by the inherent imperfections and limitations of the wireless medium and malfunction of system components. In this thesis, we make five important contributions that address these issues.  In the first contribution, we consider event- and self-triggered control and investigate how to efficiently tune and execute these paradigms for appropriate control performance. Communication strategies for aperiodic control are devised, where we jointly address the selection of medium-access control and scheduling policies. Experimental results show that the best trade-off is obtained by a hybrid scheme, combining event- and self-triggered control together with contention-based and contention-free medium access control. The second contribution proposes an event-based method to select between fast and slow periodic sampling rates. The approach is based on linear quadratic control and the event condition is a quadratic function of the system state. Numerical and experimental results show that this hybrid controller is able to reduce the average sampling rate in comparison to a traditional periodic controller, while achieving the same closed-loop control performance. In the third contribution, we develop compensation methods for out-of-order communications and time-varying delays using a game-theoretic minimax control framework. We devise a linear temporal coding strategy where the sensor combines the current and previous measurements into a single packet to be transmitted. An experimental evaluation is performed in a multi-hop networked control scenario with a routing layer vulnerability exploited by a malicious application. The experimental and numerical results show the advantages of the proposed compensation schemes. The fourth contribution proposes a distributed reconfiguration method for sensor and actuator networks. We consider systems where sensors and actuators cooperate to recover from faults. Reconfiguration is performed to achieve model-matching, while minimizing the steady-state estimation error covariance and a linear quadratic control cost. The reconfiguration scheme is implemented in a room heating testbed, and experimental results demonstrate the method's ability to automatically reconfigure the faulty system in a distributed and fast manner. The final contribution is a co-simulator, which combines the control system simulator Simulink with the wireless network simulator COOJA. The co-simulator integrates physical plant dynamics with realistic wireless network models and the actual embedded software running on the networked devices. Hence, it allows for the validation of the complete wireless networked control system, including the study of the interactions between software and hardware components. / <p>QC 20140929</p>

Page generated in 0.05 seconds