1 |
社會問題解決模式在台灣的適用性及其與壓力、憂鬱的關係 / The Generalizability of Social Problem Solving Model in Taiwanese and It’s Relationship with Stress, Depression.王韋婷, Wang,Wei Ting Unknown Date (has links)
本研究以確立中文版『社會問題解決量表-修正版(簡稱SPSI-R)』之因素結構及探討社會問題解決與憂鬱、壓力之關係為主要目的。
『社會問題解決』一詞指稱發生在日常生活中的問題解決歷程,社會問題解決模式與SPSI-R將社會問題解決歷程分為五個向度(因素):「正向問題定向」、「負向問題定向」、「理性問題解決風格」、「衝動/粗心風格」、「逃避風格」。
本研究根據理論與過去文獻探索性因素分析結果,提出三種可能適合描述華人樣本社會問題解決的因素結構:五因素一階(原理論之模型)、四因素一階、五因素二階模型。以台灣大學生為樣本,採用驗證性因素分析,結果顯示五因素一階的因素結構為最佳模型,支持原模式之理論架構與SPSI-R五因素結構在華人樣本的可類比性。同時刪除第42題因其無法確切反應逃避風格因素之意涵。
採用本研究所確立的SPSI-R五因素結構探討社會問題解決與憂鬱關係,發現排除問題風格後,負向問題定向可顯著預測憂鬱;排除問題定向後,逃避風格可顯著預測憂鬱,顯示負向問題定向與逃避風格對憂鬱有獨特之預測力。探討社會問題解決對壓力—憂鬱關係的影響,結果顯示衝動/粗心風格為日常問題與憂鬱之調節變項。此結果支持社會問題解決模式中,分殊不同向度的必要性,並提供臨床上憂鬱之問題解決治療方案可採行的策略。 / Confirmatory factor analysis was used to investigate the generalizability of the factor structure of the Social Problem-Solving Inventory- Revised (SPSI-R; D’Zurilla, Nezu, & Mayden-Olivares, 2002) The SPSI-R is based on a theoretical model and was modified by empirical data consisting of five factors – positive problem orientation, negative problem orientation, rational problem solving style, impulsivity/carelessness style, avoidance style.
According to the theory model and empirical data with Chinese sample, the present study proposed another two alternative model. Thus, three different model were tested. With the sample of 916 Taiwanese undergraduate students, the results showed that the original five factor model which was proposed by D’Zurilla et al. was the best for SPSI-R in the sense of goodness of fit. This finding supports the Generalizability of SPSI-R in Taiwanese.
Using the five-factor model of SPSI-R to examine the relation between SPSI-R and depression. Negative problem orientation and avoidance style were both significantly related to depression even after partialing out the variance of “Style” and “Orientation” respectively. While exploring the influence of SPSI-R on the relationship of stress and depression, a support was found for the moderator hypothesis which assumes that social problem solving interacts with everyday problems to influence the level of depression. Therefore, the findings in present study supported the distinction of five factors in SPSI-R. The implications of these results for social problem solving theory and assessment are also discussed.
|
2 |
Sistemas lineares: métodos de eliminação de Gauss e fatoração LU / Linear systems: methods of gaussian eliminationand LU factorizationAssis, Carmencita Ferreira Silva 20 March 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-07T13:34:15Z
No. of bitstreams: 2
Dissertação - Carmencita Ferreira Silva Assis - 2014.pdf: 1032992 bytes, checksum: dcfbc22b53a2352c6e65a7615ffb72b5 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-07T13:40:12Z (GMT) No. of bitstreams: 2
Dissertação - Carmencita Ferreira Silva Assis - 2014.pdf: 1032992 bytes, checksum: dcfbc22b53a2352c6e65a7615ffb72b5 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-05-07T13:40:12Z (GMT). No. of bitstreams: 2
Dissertação - Carmencita Ferreira Silva Assis - 2014.pdf: 1032992 bytes, checksum: dcfbc22b53a2352c6e65a7615ffb72b5 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-03-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work aims to present te
hniques for solving systems of linear equations, in its
traditional formulation, where it sought to explore the referen
es
ommonly used in
ourses in linear algebra and numeri
al
omputation, fo
using on the dire
t methods of
Gauss elimination and LU fa
torization. Troubleshooters established in the literature
are
ondu
ted, in order to illustrate the operation and appli
ation of su
h methods to
real problems, thus highlighting the possibility of inserting them in high s
hool. The
ontents were treated and exposed so that exemplify the diversity of areas in
luding
linear systems, su
h as engineering, e
onomi
s and biology, showing the gains that
an
be a
hieved by students if they have
onta
t with the methods as soon as possible.
At the end we suggest the use of
omputational resour
es in math
lasses, sin
e the
redu
tion of time spent in algebrai
manipulation will allow the tea
her to deepen the
on
epts and to address larger systems, to enhan
e the resolution perspe
tive, and
motivate the student in the learning pro
ess. / Este trabalho tem por objetivo apresentar té
ni
as de resolução de sistemas de
equações lineares, em sua formulação tradi
ional, onde se bus
ou explorar as referên
ias
usualmente utilizadas em
ursos de álgebra linear e
ál
ulo numéri
o, enfo
ando os
métodos diretos de Eliminação de Gauss e Fatoração LU. Resoluções de problemas
onsolidados na literatura são realizadas,
om a nalidade de ilustrar o fun
ionamento
e apli
ação de tais métodos em problemas reais, desta
ando assim a possibilidade de
inserção dos mesmos no Ensino Médio. Os
onteúdos foram tratados e expostos de
modo que exempli quem a diversidade de áreas que abrangem os sistemas lineares, tais
omo engenharia, e
onomia e biologia, mostrando os ganhos que podem ser al
ançados
pelos alunos, se tiverem
ontato
om os métodos o quanto antes. Ao nal sugere-
se a utilização de re
ursos
omputa
ionais nas aulas de matemáti
a, uma vez que a
redução do tempo empregado na manipulação algébri
a permitirá que o professor possa
aprofundar os
on
eitos e abordar sistemas de maior porte, que ampliem a perspe
tiva
de resolução, além de motivar o aluno no pro
esso de aprendizagem.
|
Page generated in 0.0451 seconds