1 |
Parity-Time Symmetry in Non-Hermitian Quantum WalksAssogba Onanga, Franck 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Over the last two decades a new theory has been developed and intensively investigated in quantum physics. The theory stipulates that a non-Hermitian Hamiltonian can also represents a physical system as long as its energy spectra can be purely real in certain regime depending on the parameters of the Hamiltonian. It was demonstrated that the reality of the eigenenergy was conditioned by a certain kind of symmetry embedded in the actual non-Hermitian system. Indeed, such systems have a combined reflection (parity) symmetry (P) and time-reversal symmetry (T), PT-symmetry. The theory opens the door to new features particularly in open systems in which there could be gain and/or loss of particle or energy from and/or to the environment. A key property of the theory is the PT-symmetry breaking transition which occurs at the exceptional point (EP). The exceptional points are special degeneracies characterized by a coalescence of not only the eigenvalues but also of the corresponding eigenvectors of the system; and the coalescence happens when the gain-loss strength, a measure of the openness of the system, exceeds the intrinsic energy-scale of the system.
In recent years, quantum walks with PT-symmetric non-unitary time evolution have been realized in systems with balanced gain and loss. These systems fall in two categories namely continuous time quantum walks (CTQW) that are characterized by a unitary or non-unitary time evolution Hamiltonian, and discrete-time quantum walks (DTQW) whose dynamic is described by a unitary or non-unitary time evolution operator consisting of a product of shift, coin, and gain-loss operations. In this thesis, we investigate the PT-symmetric phase of CTQW and DTQW in a variety of non-Hermitian lattice systems with both position-dependent and position independent, parity-symmetric tunneling functions in the presence of PT-symmetric impurities located at arbitrary parity-symmetric site on the lattice. Moreover, we explore the topological phase diagram and its novel features in non-Hermitian, homogeneous and non-homogeneous, PT-symmetric DTQW with closed and open boundary conditions. We conduct our study using analytical and numerical approaches that are directly and easily implementable in physical experiments. Among others, we found that, despite their non-unitary evolution, open systems governed by parity-time symmetric Hamiltonian support conserved quantities and that the PT-symmetry breaking threshold depends on the physical structure of the Hamiltonian and its underlying symmetries.
|
2 |
Emergent Phenomena in Anisotropic PhotonicsEmroz Khan (9234977) 20 April 2022 (has links)
<pre>The degree of freedom brought about by breaking the directional symmetry of space through the use of anisotropic media finds applications in numerous photonic systems. Almost all these systems are based on physical principles that are generalized extensions of their isotropic counterparts, much in the same way an ellipse is related to a circle. However, as we show, there are examples where, in the presence of loss, disorder or even coupling to the measurement apparatus, emerges a completely new behavior which is qualitatively different from the isotropic case. In this work we study these emergent phenomena found in open anisotropic photonic systems.</pre>
<pre><br></pre>
<pre>We demonstrate that open systems based on biaxial anisotropic medium can support exceptional points which are singularities in the parameter space of the system where the mode frequencies as well as the modes themselves coalesce. We also show that topological insulators, which are novel materials that behave as dielectric in the bulk but metallic in the surface and exhibit bianisotropy through the coupling of their electric and magnetic response, can emit thermal radiation that carries nonzero spin angular momentum. Next, after describing how the strong anisotropy of hyperbolic metamaterial can support electromagnetic fields propagating with high wavenumbers unbounded by the frequency, we show that a super-resolution imaging scheme based on such material is quite robust against substantial loss and disorder. Finally, we consider an example of an incoherent perfect absorber and show that loss and anisotropy in this case can work together to recover the ideal lossless limit for the absorbing performance. In addition to making new conceptual connections between photonics and other branches of science such as condensed matter physics, biotechnology and quantum mechanics, these new emergent phenomena are shown to have thermal, imaging and sensing applications.</pre>
|
3 |
Tailoring non-classical states of light for applications in quantum information processingTschernig, Konrad 26 October 2022 (has links)
In dieser Arbeit wird das Design und die Präparation von nicht-klassischen Zuständen von Licht in
verschiedenen Szenarien untersucht. Zunächst wird die theoretische Beschreibung eines
Interferometers entwickelt, welches für die Messung der Teilchenaustauschphase von Photonen
entworfen wurde. Die Analyse der experimentellen Daten offenbart den bosonischen Charakter von
Photonen, sowie die geometrische Phase, welche mit dem physischen Austausch zweier
Quantenzustände assoziiert ist. Nach dieser Feststellung der Austauschsymmetrie von
Zweiphotonenzuständen folgt die Ausarbeitung der Theorie über die Propagation von
Mehrphotonenzuständen in Multiportsystemen. Dabei offenbaren sich hoch-dimensionale,
synthetische, gekoppelte Strukturen die sich aus der Mehrphotonenanregung von diskreten Systemen
ergeben. Basierend auf diesen Resultaten wird eine konkrete Anwendung der Theorie im Kontext von
nicht-hermitischen Systemen formuliert. Dabei ergeben sich sogenannte “exceptional points” höherer
Ordnung, welche Anwendungen im Bereich der Sensorik finden und ferner nur im Raum der
Photonenanzahlzustände von diskreten Systemen realisiert werden können. Neben der Sensorik ist der
Transport von Lichtzuständen ein wichtiger Aspekt in der Verarbeitung von Quanteninformationen. In
dieser Hinsicht werden hier Photonische Topologische Isolatoren untersucht, welche eine
rückstreuungsfreie Propagation entlang ihrer Ränder erlauben. Es wird gezeigt, dass partiell kohärentes
Licht, Gaussisch und Nicht-Gaussisch verschränkte Zweiphotonenzustände einen solchen
topologischen Schutz genießen können. Dies gilt unter der Vorraussetzung, dass die Anfangsanregung
in einem wohldefinierten Bereich des topologischen Schutzes liegt, wodurch das “klassische”
Bandlücken-kriterium erweitert und gestärkt wird. / In this work we study the design and preparation of non-classical states of light in several scenarios.
We begin by developing the theoretical description of an interferometer, which is designed to measure
the particle exchange phase of photons. The analysis of the experimental data reveals the bosonic
nature of photons, as well as the geometric phase associated with the physical exchange of the quantum
states of two photons. Having established the exchange symmetry of two-photon states, we proceed to
develop the theory of multi-photon states propagating in multi-port systems. We unveil the high-
dimensional synthetic coupled structures that arise via the multi-photon excitation of discrete systems.
Using these results, we formulate an application of the theory in the context of non-hermitian systems.
We find so-called high-order exceptional points, which find applications in sensing and can only be
achieved in the photon-number space of discrete systems. Apart from sensing, an important ingredient
for the processing of quantum information is the transport of light states. In this regard, we consider
photonic topological insulators, which allow the back-scattering-free propagation along their edges. We
show that partially coherent light, Gaussian- as well as non-Gaussian two-photon entangled states can
enjoy such a topological protection, provided that the initial excitations fit inside a well defined
topological window of protection, which strengthens the “classical” band-gap protection criterion.
|
4 |
Phénomènes de transport originaux dans des expériences micro-ondes via la mise en forme spatiale et spectrale / Microwave experiments on atypical transport phenomena induced by spatial and spectral wave shapingBöhm, Julian 15 September 2016 (has links)
Le transport des ondes joue un rôle majeur dans les systèmes de communication comme le Wifi ou les fibres optiques. Les principaux problèmes rencontrés dans ces systèmes concernent la protection contre les intrusions, la consommation d’énergie et le filtrage modal. Nous proposons différentes expériences micro-ondes mettant toutes en œuvre une mise en forme des ondes, pour traiter ces problèmes. Dans une cavité micro-ondes, des états de diffusion particuliers sont générés en s’appuyant uniquement sur des mesures de transmission et sur le formalisme du temps de retard de Wigner-Smith. Ces états sont capables d’éviter une région déterminée de la cavité, de se concentrer sur un point particulier, ou de suivre une trajectoire d’une particule classique. Le filtrage de mode est mis en œuvre dans un guide d’ondes aux frontières ondulées et en présence de pertes dépendant de la position. Le profil du guide est choisi de façon à ce que les deux modes de Bloch qui se propagent encerclent un point exceptionnel. Cette trajectoire s’accompagne d’une transition non-adiabatique entre les deux modes et d'un filtrage asymétrique de ces modes. La thèse présente également des travaux liés à la problématique des algorithmes de « recherche quantique », notamment l’algorithme de Grover. Cette recherche est mise en œuvre dans un réseau en nid d’abeilles de résonateurs micro-ondes couplés, bien décrits par un modèle de liaisons fortes (le système constitue un analogue micro-ondes du graphène). Une expérience de preuve de principe propose la recherche de deux résonateurs distincts reliés au réseau. La loi d’échelle attendue pour cet algorithme est expérimentalement obtenue dans une chaîne linéaire / Transport of waves plays an important role in modern communication systems like Wi-Fi or optical fibres. Typical problems in such systems concern security against possible intruders, energy consumption, time efficiency and the possibility of mode filtering. Microwave experiments are suited to study this kind of problems, because they offer a good control of the experimental parameters. Thus we can implement the method of wave shaping to investigate atypical transport phenomena, which address the mentioned problems. Wave front shaping solely based on the transmission together with the Wigner-Smith time delay formalism allows me to establish special scattering states in situ. These scattering states avoid a pre-selected region, focus on a specific spot or follow trajectories of classical particles, so called particle-like scattering states. Mode filtering is induced inside a waveguide with wavy boundaries and position dependent loss. The boundary profiles are chosen in such a way that the two propagating modes describe an encircling of an exceptional point in the Bloch picture. The asymmetric mode filtering is found due to the appearing non-adiabatic transitions. Another part of my work deals with Grover’s quantum search. I put such a search into practice in a two-dimensional graphene-lattice using coupled resonators, which form a tight-binding analogue. In this proof of principle experiment we search for different resonators attached to the graphene-lattice. Furthermore, the scaling behaviour of the quantum search is quantified for a linear chain of resonators
|
Page generated in 0.0997 seconds