• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Hopf Bifurcation in Spatially Extended Excitable Systems from Neuroscience

January 2012 (has links)
abstract: One explanation for membrane accommodation in response to a slowly rising current, and the phenomenon underlying the dynamics of elliptic bursting in nerves, is the mathematical problem of dynamic Hopf bifurcation. This problem has been studied extensively for linear (deterministic and stochastic) current ramps, nonlinear ramps, and elliptic bursting. These studies primarily investigated dynamic Hopf bifurcation in space-clamped excitable cells. In this study we introduce a new phenomenon associated with dynamic Hopf bifurcation. We show that for excitable spiny cables injected at one end with a slow current ramp, the generation of oscillations may occur an order one distance away from the current injection site. The phenomenon is significant since in the model the geometric and electrical parameters, as well as the ion channels, are uniformly distributed. In addition to demonstrating the phenomenon computationally, we analyze the problem using a singular perturbation method that provides a way to predict when and where the onset will occur in response to the input stimulus. We do not see this phenomenon for excitable cables in which the ion channels are embedded in the cable membrane itself, suggesting that it is essential for the channels to be isolated in the spines. / Dissertation/Thesis / Ph.D. Applied Mathematics 2012
2

Synchronization in periodically driven and coupled stochastic systems-A discrete state approach

Prager, Tobias 16 May 2006 (has links)
Wir untersuchen das Verhalten von stochastischen bistabilen und erregbaren Systemen auf der Basis einer Modellierung mit diskreten Zuständen. In Ergänzung zum bekannten Markovschen Zwei-Zustandsmodell bistabiler stochastischer Dynamik stellen wir ein nicht Markovsches Drei-Zustandsmodell für erregbare Systeme vor. Seine relative Einfachheit, verglichen mit stochastischen Modellen erregbarer Dynamik mit kontinuierlichem Phasenraum, ermöglicht eine teilweise analytische Auswertung in verschiedenen Zusammenhängen. Zunächst untersuchen wir den gemeinsamen Einfluß eines periodischen Treibens und Rauschens. Dieser wird entweder mit Hilfe spektraler Größen oder durch Synchronisation des Systems mit dem treibenden Signal charakterisiert. Wir leiten analytische Ausdrücke für die spektrale Leistungsverstärkung und das Signal-zu-Rauschen Verhältnis für periodisch getriebene Renewal-Prozesse her und wenden diese auf das diskrete Modell für erregbare Dynamik an. Stochastische Synchronization des Systems mit dem treibenden Signal wird auf der Basis der Diffusionseigenschaften der Übergangsereignisse zwischen den diskreten Zuständen untersucht. Wir leiten allgemeine Formeln her, um die mittlere Häufigkeit dieser Ereignisse sowie deren effektiven Diffusionskoeffizienten zu berechnen. Über die konkrete Anwendung auf die untersuchten diskreten Modelle hinaus stellen diese Ergebnisse ein neues Werkzeug für die Untersuchung periodischer Renewal-Prozesse dar. Schließlich betrachten wir noch das Verhalten global gekoppelter bistabiler und erregbarer Systeme. Im Gegensatz zu bistabilen System können erregbare Systeme synchronisiert werden und zeigen kohärente Oszillationen. Alle Untersuchungen des nicht Markovschen Drei-Zustandsmodells werden mit dem prototypischen Modell für erregbare Dynamik, dem FitzHugh-Nagumo System, verglichen und zeigen eine gute Übereinstimmung. / We investigate the behavior of stochastic bistable and excitable dynamics based on a discrete state modeling. In addition to the well known Markovian two state model for bistable dynamics we introduce a non Markovian three state model for excitable systems. Its relative simplicity compared to stochastic models of excitable dynamics with continuous phase space allows to obtain analytical results in different contexts. First, we study the joint influence of periodic signals and noise, both based on a characterization in terms of spectral quantities and in terms of synchronization with the periodic driving. We present expressions for the spectral power amplification and signal to noise ratio for renewal processes driven by periodic signals and apply these results to the discrete model for excitable systems. Stochastic synchronization of the system to the driving signal is investigated based on diffusion properties of the transition events between the discrete states. We derive general results for the mean frequency and effective diffusion coefficient which, beyond the application to the discrete models considered in this work, provide a new tool in the study of periodically driven renewal processes. Finally the behavior of globally coupled excitable and bistable units is investigated based on the discrete state description. In contrast to the bistable systems, the excitable system exhibits synchronization and thus coherent oscillations. All investigations of the non Markovian three state model are compared with the prototypical continuous model for excitable dynamics, the FitzHugh-Nagumo system, revealing a good agreement between both models.
3

Noise in adaptive excitable systems and small neural networks

Kromer, Justus Alfred 11 January 2017 (has links)
Neuronen sind erregbare Systeme. Ihre Antwort auf Anregungen oberhalb eines bestimmten Schwellwertes sind Pulse. Häufig wird die Pulserzeugung von verschiedenen Rückkopplungsmechanismen beeinflusst, die auf langsamen Zeitskalen agieren. Das kann zu Phänomenen wie Feuerraten-Adaptation, umgekehrter Feuerraten-Adaptation oder zum Feuern von Pulsen in Salven führen. Weiterhin sind Neuronen verschiedenen Rauschquellen ausgesetzt und wechselwirken mit anderen Neuronen, in neuronalen Netzen. Doch wie beeinflusst das Zusammenspiel von Rückkopplungsmechanismen, Rauschen und der Wechselwirkung mit anderen Neuronen die Pulserzeugung? Diese Arbeit untersucht, wie die Pulserzeugung in rauschgetriebenen erregbaren Systemen von langsamen Rückkopplungsmechanismen und der Wechselwirkung mit anderen erregbaren Systemen beeinflusst wird. Dabei wird die Pulserzeugung in drei Szenarien betrachtet: (i) in einem einzelnen erregbaren System, das um einen langsamen Rückkopplungsmechanismus erweitert wurde, (ii) in gekoppelten erregbaren Systemen und (iii) in stark gekoppelten salvenfeuernden Neuronen. In jedem dieser Szenarien wird die Pulsstatistik mit Hilfe von analytischen Methoden und Computersimulationen untersucht. Das wichtigste Resultat im ersten Szenario ist, dass das Zusammenspiel von einer stark anregenden Rückkopplung und Rauschen zu rauschkontrollierter Bistabilität führt. Das erlaubt es dem System zwischen verschiedenen Modi der Pulserzeugung zu wechseln. In (ii) wird die Pulserzeugung stark von der Wahl der Kopplungsstärken und der Anzahl der Verbindungen beeinflusst. Analytische Näherungen werden abgeleitet, die einen Zusammenhang zwischen der Anzahl der Verbindungen und der Pulsrate, sowie der Pulszugvariabilität herstellen. In (iii) wird festgestellt, dass eine hemmende Rückkopplung zu sehr unregelmäßigem Verhalten der isolierten Neuronen führt, wohingegen eine starke Kopplung mit dem Netzwerk ein regelmäßigeres Feuern von Salven hervorruft. / Neurons are excitable systems. Their responses to excitations above a certain threshold are spikes. Usually, spike generation is shaped by several feedback mechanisms that can act on slow time scales. These can lead to phenomena such as spike-frequency adaptation, reverse spike-frequency adaptation, or bursting. In addition to these, neurons are subject to several sources of noise and interact with other neurons, in the connected complexity of a neural network. Yet how does the interplay of feedback mechanisms, noise as well as interaction with other neurons affect spike generation? This thesis examines how spike generation in noise-driven excitable systems is influenced by slow feedback processes and coupling to other excitable systems. To this end, spike generation in three setups is considered: (i) in a single excitable system, which is complemented by a slow feedback mechanism, (ii) in a set of coupled excitable systems, and (iii) in a set of strongly-coupled bursting neurons. In each of these setups, the statistics of spiking is investigated by a combination of analytical methods and computer simulations. The main result of the first setup is that the interplay of strong positive (excitatory) feedback and noise leads to noise-controlled bistability. It enables excitable systems to switch between different modes of spike generation. In (ii), spike generation is strongly affected by the choice of the coupling strengths and the number of connections. Analytical approximations are derived that relate the number of connections to the firing rate and the spike train variability. In (iii), it is found that negative (inhibitory) feedback causes very irregular behavior of the isolated bursters, while strong coupling to the network regularizes the bursting.

Page generated in 0.0765 seconds