Spelling suggestions: "subject:"excitedstates"" "subject:"excitedstate""
21 |
General theory of excitation energy transfer in donor-mediator-acceptor systemsKimura, Akihiro 16 April 2009 (has links)
No description available.
|
22 |
A quantum equation of motion for chemical reaction systems on an adiabatic double-well potential surface in solution based on the framework of mixed quantum-classical molecular dynamicsOkazaki, Susumu, Yamada, Atsushi 01 1900 (has links)
No description available.
|
23 |
Theoretical Studies of Ground and Excited State ReactivityFarahani, Pooria January 2014 (has links)
To exemplify how theoretical chemistry can be applied to understand ground and excited state reactivity, four different chemical reactions have been modeled. The ground state chemical reactions are the simplest models in chemistry. To begin, a route to break down halomethanes through reactions with ground state cyano radical has been selected. Efficient explorations of the potential energy surfaces for these reactions have been carried out using the artificial force induced reaction algorithm. The large number of feasible pathways for reactions of this type, up to eleven, shows that these seemingly simple reactions can be quite complex. This exploration is followed by accurate quantum dynamics with reduced dimensionality for the reaction between Cl− and PH2Cl. The dynamics indicate that increasing the dimensionality of the model to at least two dimensions is a crucial step for an accurate calculation of the rate constant. After considering multiple pathways on a single potential energy surface, various feasible pathways on multiple surfaces have been investigated. As a prototype of these reactions, the thermal decomposition of a four-membered ring peroxide compound, called 1,2-dioxetane, which is the simplest model of chemi- and bioluminescence, has been studied. A detailed description of this model at the molecular level can give rise to a unified understanding of more complex chemiluminescence mechanisms. The results provide further details on the mechanisms and allow to rationalize the high ratio of triplet to singlet dissociation products. Finally, a thermal decomposition of another dioxetane-like compound, called Dewar dioxetane, has been investigated. This study allows to understand the effect of conjugated double bonds adjacent to the dioxetane moiety in the chemiluminescence mechanism of dioxetane. Our studies illustrate that no matter how complex a system is, theoretical chemistry can give a level of insight into chemical processes that cannot be obtained from other methods.
|
24 |
Analysis of <sup>26</sup>Al + p elastic and inelastic scattering reactions and Galactic abundances of <sup>26</sup>AlPittman, Stephen Todd 01 December 2011 (has links)
26Al(p,p)26Al and 26Al(p,p’)26Al* scattering reactions were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at the Oak Ridge National Laboratory (ORNL). The purpose of the elastic scattering study was to determine properties of previously uncharacterized 27Si levels above the proton threshold in the energy range E(c.m.) ~ 0.5 - 1.5 MeV and to calculate reaction rates for the 26Al(p,γ[gamma])27Si reaction that destroys 26Al. The inelastic scattering reaction was also evaluated to investigate the reaction that produces the metastable state of 26Al at E(c.m.) = 228 keV, which would in turn destroy 26Al in the stellar environment.
Pure 26Al beams (E(beam) = 13 - 41 MeV) with intensities of ~2*106 26Al/s bombarded a thin polypropylene target of 46 μ[micro]g/cm2 thickness for 7 days. Scattered protons were detected in the Silicon Detector Array (SIDAR), covering laboratory angles 18 to 41 degrees. Background events were rejected by detecting these protons in coincidence with recoiled 26Al particles in an ionization chamber, and proton yields were measured at 45 energies from E(c.m.) = 0.49 - 1.53 MeV. A thick 2.4 mg/cm2 polypropylene target was also bombarded with a 32 MeV 26Al beam for 1.5 days for comparison with thin-target excitation functions.
Little evidence for the inelastic scattering reaction was observed, indicating that this is not a significant destruction pathway. For the first time, however, an upper limit for the cross section of this reaction was estimated, and it has been set at 5*10-2 barns. The first upper limits were also established for possible resonances of the elastic scattering reaction with angular momentum transfers up to L = 3 that were not directly observed by this study. Thin-target elastic scattering data suggested a potential resonance at E(r) = 544 keV, which had not been previously observed, with (9/2, 11/2)+ spin and proton width Γp[Gamma_p] ≤ 1 keV. Thick-target analysis appeared to confirm this result. An upper limit for the strength of this resonance was estimated to be 1.4*10-5 keV or 1.6*10-5 keV for a 9/2+ or 11/2+ state, respectively, moderately increasing the total 26Al(p,γ[gamma])27Si resonant reaction rate at supernova temperatures.
|
25 |
Modelling the optical properties of semiconducting nanostructuresBuccheri, Alexander January 2016 (has links)
In this thesis we describe the development of a real-space implementation of the Bethe-Salpeter equation (BSE) and use it in conjunction with a semi-empirical tight-binding model to investigate the optoelectronic properties of colloidal quantum- confined nanostructures. This novel implementation exploits the limited radial extent and small size of the atomic orbital basis to treat finite systems containing up to ∼4000 atoms in a fully many-body framework. In the first part of this thesis our tight-binding model is initially benchmarked on zincblende CdSe nanocrystals, before subsequently being used to investigate the electronic states of zincblende CdSe nanoplatelets as a function of thickness. The band-edge electronic states are found to show minimal variation for a range of thicknesses and the results of our tight-binding model show good agreement with those predicted using a 14-band k·p model for a nanoplatelet of 4 monolayers (ML) in thickness. Optical absorption spectra were also computed in the independent-particle approximation. While the results of the tight-binding model show good agreement with those of the 14-band k·p model in the low-energy region of the spectrum, agreement with experiment was poor. This reflects the need for a many-body treatment of optical absorption in nanoplatelet systems. In the second part of this thesis we apply our tight-binding plus BSE model to study the excitonic properties of CdSe nanocrystals and nanoplatelets. Simulations performed on CdSe nanocrystals examined an approximation of the BSE equivalent to configuration interaction singles (CIS), and found that both the optical gap and the low-energy spectral features were unaffected by the approximation. A comparison of exciton binding energies with those predicted by CIS demonstrates the sensitivity of results to the exact treatment of dielectric screening and the decision of whether or not to screen exchange. Our model predicts optical gaps that are in strong agreement with average experimental data for all but the smallest diameters, but was not able to reproduce low-energy spectral features that were fully consistent with experiment. This was attributed to the absence of the spin-orbit interaction in the model. Simulations performed on CdSe nanoplatelets investigate the optical gaps and exciton binding energies as a function of thickness. Exciton binding energies were found to reach ∼200 meV for the thinnest system, however, optical gaps were slightly overestimated in comparison to experiment. This is attributed to the reduced lateral dimensions used in our simulations and our bulk treatment of dielectric screening. A two-dimensional treatment of dielectric screening is expected to further increase binding energies. Calculations of the excitonic absorption spectrum reproduce the characteristic spectral features observed in experiment, and show strong agreement with the spectra of nanoplatelets, with thicknesses ranging from 3 ML to 5 ML.
|
26 |
Espalhamento inelastico de eletrons no sup(12) CCAMPOS, MARIA C.A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:56Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:42Z (GMT). No. of bitstreams: 1
07541.pdf: 9270192 bytes, checksum: 625d1a8ce146718eee35be24d9a360a3 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
27 |
Cálculos de estrutura eletrônica de materiais e nanoestruturas com inclusão de autoenergia: Método LDA - 1/2. / Electronic structure calculations of material and nanostructures with the inclusion of the self-energy: the LDA - 1/2 method.Mauro Fernando Soares Ribeiro Junior 13 December 2011 (has links)
Neste trabalho, utilizamos o desenvolvimento recente do método DFT/LDA-1/2 para cálculos de estados excitados em materiais. Começamos com um resumo da teoria do funcional da densidade (DFT) e incluímos uma introdução ao método LDA-1/2 para cálculos de excitações em sólidos. Na compilação dos resultados esperamos ter demonstrado a utilidade do LDA-1/2 para cálculos de alinhamentos de bandas em junções semicondutor/semicondutor e semicondutor/isolante. A aplicação do método envolve o conhecimento da química básica dos sistemas. Para tanto, escolhemos sistemas importantes para diversas aplicações, e cujos modelos de simulação estão o limite ou fora do alcance de metodologias que envolvem alto custo computacional, mas que foram bem caracterizados experimentalmente. Concentramos nossas ações no estudo da capacidade preditiva do LDA-1/2 para alinhamentos de bandas, os chamados band offsets, particularmente importantes para a micro e optoeletrônica. Quando não foi possível compararmos nossos resultados com o experimento, procuramos a comparação com métodos estado-da-arte como GW. Bons resultados foram obtidos para band gaps e band offsets de interfaces A1As/GaAs, Si/SiO2, A1N/GaN e CdSe/CdTe, que representam os diferentes tipos de jun_c~oes poss__veis, com (e.g. A1As/GaAs, A1N/GaN) e sem (e.g. Si/SiO2, CdSe/CdTe) ^anions omuns, com (e.g. A1As/GaAs) e sem (e.g. CdSe/CdTe, Si/SiO2) casamento de parâmetros de rede e diferentes tipos de alinhamentos (\"straddling\", e.g. A1As/GaAs ou \"staggered\"e.g. CdSe/CdTe). Analisamos de maneira sistemática o comportamento do entorno do bandgap ao longo da interface, verificando plano a plano atômico o comportamento das bordas de valência e condução com LDA-1/2 em comparação com o LDA, ou comparando diferentes modelos dentro do LDA-1/2, como o caso do CdSe/CdTe e do Si/SiO2. Para o caso A1As/GaAs, aproveitamos o casamento de parâmetros de rede dos semicondutores constituintes e tentamos um modelo de interface de ligas A1xGa1-x As/GaAs para estudar a variação de valência, condução e bandgap em função da composição x. No AlN/GaN, estudamos também os offsets com as contribuições dos orbitais separadamente. Em todos os casos o LDA-1/2 levou-nos a resultados interessantes com modelos simples. A exploração de novas fronteiras de aplicação do método fez-se necessária com a diminuição da dimensionalidade dos sistemas, de 3D (bulk ) para 2D (interfaces) e depois para 1D, ou seja, _os quânticos (\"nanofios\"). Nosso material de estudo para os foi o ZnO que, além da motivação oriunda de conhecidas aplicações em optoeletrônica, apresenta desafios para simulações bulk com qualquer método, e que foi abordado com certo sucesso usando o LDA-1/2 anteriormente, sendo que para fios quânticos encontramos resultados interessantes em geometrias triangulares que facilitaram os modelos. Calculamos o bandgap ZnO bulk e de nanofios passivados e não passivados com hidrogênios usando LDA e LDA-1/2 sem polarização de spin. As estruturas de bandas e o bandgap como função do diâmetro do ano_o foram calculados e ajustes com funções de decaimento foram feitos para comparação, por extrapolação, dos bandgaps com valores experimentais. Foi possível comparar nossos resultados de fios com o bulk, e predizer uma faixa de variaação de bandgaps que os experimentais podem encontrar para nanofios triangulares de ZnO. Também foi feita análise de energias de confinamento em fios quânticos de ZnO, comparando o LDA com LDA-1/2. Finalmente, mostramos os resultados de uma oportunidade de aplicação do método a um material com defeitos, recentemente descoberto e promissor, e com enorme mercado potencial em fotocatálise, o Ti1-O4N. Nosso trabalho envolveu a aplicação do LDA-1/2 a um problema muito desafiador, e.g. a geração de energia limpa, especificamente a separação da molécula de água para produção de hidrogênio. O desafio maior vem da dificuldade de predição de bandgaps teoricamente, em particular para sistemas grandes como é o caso de modelos atomísticos com defeitos, devido aos altos custos computacionais envolvidos. Tais dificuldades forçam os pesquisadores a usarem parâmetros ajustáveis ou métodos semi-empíricos, ou modelos simplificados demais para descrever precisamente resultados experimentais. Isto dificulta o estudo dos sistemas fotocatalíticos potencialmente eficientes e que não foram ainda caracterizados ou otimizados. O LDA-1/2 é aqui validado para esta classe de materiais, abrindo assim a oportunidade para estudar sistemas mais realísticos e complexos para cálculos ainda mais precisos, particularmente para geração de energia limpa. Em particular, modelamos o TiO2 na estrutura rutile com nitrogênio substitucional, cuja estrutura eletrônica é ainda debatida. Foi a primeira aplicação do LDA-1/2 a sistemas com algum tipo de defeito, com ótimos resultados para o novo sistema Ti1- _O4N com vacâncias de Ti. / In this work, we used the recent development of DFT/LDA-1/2 method for calculations of excited states in materials. We begin with a summary of the density functional theory (DFT) and included an introduction to the method LDA-1/2 for calculations of excitations in solids. In compiling the results we hope to have demonstrated the usefulness of the LDA-1/2 for calculating alignments of bands at junctions semiconductor / semiconductor and semiconductor / insulator. The method involves the knowledge of basic chemical systems. To do this we chose systems important for several applications, and simulation models which are the limit or beyond the reach of methodologies involving high computational cost, but have been well characterized experimentally. We focus our actions in the study of the predictive capability of the LDA-1/2 for alignments of bands, the band called offsets, particularly important for micro and optoelectronics. When it was not possible to compare our results with experiment, we compared the methods with state of the art as GW. Good results were obtained for band gaps and band offsets of interfaces A1As/GaAs, Si/SiO2, A1N/GaN and CdSe / CdTe, which represent the different types of jun_c poss__veis-tions, with (eg A1As/GaAs, A1N/GaN) and without (eg Si/SiO2, CdSe / CdTe) ^ omuns anions with (eg A1As/GaAs) and without (eg CdSe / CdTe, Si/SiO2) matching network parameters and different types of alignments (\"straddling\" eg A1As/GaAs or \"staggered\" eg CdSe / CdTe). Systematically analyze the behavior of the environment along the interface bandgap, plane by plane scanning behavior of the edges atomic valence and conduction with LDA-half in comparison with LDA, or comparing templates within the LDA-1 / 2, as the case of CdSe / CdTe and Si/SiO2. For the case A1As/GaAs, we take the marriage of network parameters of semiconductor components and try an interface model alloys A1xGa1-x As / GaAs to study the variation of valence, conduction and bandgap as a function of composition x. In the AlN / GaN, we also studied the offsets with the contributions of the orbitals separately. In all cases the LDA-half led us to interesting results from simple models. The exploration of new frontiers of the method was necessary to decrease the dimensionality of the systems, the 3D (bulk) for 2D (interfaces) and then to 1D, ie, quantum _os (\"nanowires\"). Our study material for the ZnO was that, apart from the motivation coming from known applications in optoelectronics, presents challenges for bulk simulations with any method, and that was addressed with some success using the LDA-half earlier, and for wireless find interesting results in quantum triangular geometries that facilitated models. We calculate the bandgap and bulk ZnO nanowires passivated and not passivated with hydrogen using LDA and LDA-1/2 without spin polarization. The bandgap structures and strips as a function of the diameter of ano_o adjustments are calculated and decay functions for comparison were made by extrapolation of the bandgaps with experimental values. It was possible to compare our results with the bulk of wires, and predict a range of bandgaps that variaação can find experimental triangular ZnO nanowires. It was also made analysis of energy confinement in ZnO quantum wires, comparing LDA with LDA-1/2. Finally, we show the results of an opportunity to apply the method to a material with defects, newly discovered and promising, and with huge market potential in photocatalysis, the Ti1-O4N. Our work involved the application of LDA-1/2 to a very challenging problem, eg the generation of clean energy, specifically the separation of the water molecule for hydrogen production. The main challenge has been the difficulty of predicting bandgaps theoretically, in particular for large systems such as the model atomistic defects because of the high computational costs involved. These difficulties force the researchers to use adjustable parameters or semi-empirical methods, or other simplified models to accurately describe experimental results. This complicates the study of potentially efficient photocatalytic systems which have not yet been characterized or optimized. The LDA-1/2 is here validated for this class of materials, thus opening the opportunity to study more realistic and complex systems for more accurate calculations, particularly for clean energy generation. In particular, we modeled the structure of TiO2 in the rutile with substitutional nitrogen, whose electronic structure is still debated. It was the first application of the LDA-1/2 systems with some kind of defect, with excellent results for the new system Ti1-_O4N with Ti vacancies.
|
28 |
Espalhamento inelastico de eletrons no sup(12) CCAMPOS, MARIA C.A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:56Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:42Z (GMT). No. of bitstreams: 1
07541.pdf: 9270192 bytes, checksum: 625d1a8ce146718eee35be24d9a360a3 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
29 |
Aldeídos alifáticos lineares triplete: formação enzimática e efeitos em estruturas biológicas / Linear aliphatic triplet aldehydes: enzymatic formation and effects in biological structuresAna Campa 25 September 1984 (has links)
Peroxidase de rábano (\"horseradish peroxidase - HRP), atuando como uma oxidase frente a substratos apropriados, catalisa a formação de espécies eletronicamente excitadas triplete. Os produtos obtidos são os esperados da clivagem de um intermediário 1,2-dioxetânico hipotético. Espécies tripletes geradas enzimaticamente são capazes de transferir energia a vários aceptores incluindo macromoléculas tais como: fitocromo, RNA, DNA e proteínas, além de organelas como cloroplastos. Acompanhamos a oxidação aeróbica de aldeídos alifáticos lineares (C2-C6) catalisada pela HRP; esta reação gera o aldeído inferior (Cn-1) no estado excitado triplete e ácido fórmico. Dois aspectos principais são abordados neste trabalho: (i) análise dos resultados em base ao comprimento da cadeia carbônica do substrato (C2 → C6) e (ii) a procura de emissões sensitizadas em estruturas biológicas (cloroplastos e microsomas). - Oxidação aeróbica dos aldeídos alifáticos lineares C2-C6 catalisada pela HRP. Corantes xantênicos e clorofila a solubilizada em micelas foram utilizados para monitorar estados eletronicamente excitadas geradas pela oxidação aeróbica dos aldeídos alifáticos lineares catalisada pela HRP. Quando eosina é o aceptor fluorescente, máxima emissão ocorre com butanal. Este resultado é discutido em conecçao com o fato de que uma série de efeitos biológicos de ácidos alifáticos lineares são máximos com o ácido butírico. A possível paticipação de estados excitados no processo que desencadeia as atividades biológicas deste ácido é sugerida. - TransferêncIa de energia para cloroplastos. Aldeídos alifáticos lineares (C2-C6) promovem emissão em cloroplastos na região de fluorescência de clorofila. Esta habilidade deve provavelmente constituir um caso de \"luminescência escura\" (\"dark luminescence\") . Se HRP estiver presente o aldeído (Cn) é oxidado ao homólogo inferior (Cn-1) no estado triplete, o qual sensitiza direta e/ou indiretamente a fluorescência de clorofila. Clorofila excitada por este processo é incapaz de reduzir um aceptor de Hill. - Quimioluminescência de microsomas expostos à oxidação aeróbica de aldeídos lineares catalisada pela HRP. Microsomas expostos ao sistema propanal/HRP/O2 desenvolvem luminescência de baixa intensidade. Este processo emissivo é distinto daquele originário durante a peroxidação de lipídeos uma vez que: (i ) a emissão se situa próxima a 560 nm e não na região espectral do vermelho (como esperado para a emissão bimol de oxigênio singlete) e (ii) não há formação de malonaldeído. Acetaldeído triplete parecer ser a espécie responsável pela indução deste processo através da excitação de algum componente microsomal, possivelmente uma flavoproteína. / Horseradish peroxidase (HRP), acting as anoxidase upon appropriate substrates, promotes the formation of electronically excite triplet species. The products obtained are those which would be expected from the cleavage of a hypothetical 1,2 dioxetane intermediate. Enzyme-generated triplet species are able to transfer energy to several acceptors, including macromolecules such as phytochrome, RNA, DNA and proteins, as well as to organeles such as chloroplasts. In the present study, we investigated the HRP-catalyzed aerobic oxidation of linear aliphatic aldehydes (C2 to C6), a reaction which generates the next lower aldehyde in the triplet state and formic acid. Two main aspects were emphasized in this work: (i ) the dependence of the results of the length of the carbonic chain of the substrate (C2 to C6) and (ii) the possibility of inducing sensitized emission from biological structures (chloroplasts and microsomes). HRP-catalyzed aerobic oxidation of aliphatic aldehydes. Xanthene dyes and micelle-solubilized chlorophyll-a were used to monitor the electronically excited species generated by the peroxidase-catalyzed aerobic oxidation of C2-C6 linear aldehydes. Maximal emission occurs with butanal as substrate and eosine as the fluorescent acceptor. This result is discussed in connection with the fact that the multiple biological effects of short chain aliphatic acids are maximal for butyric acid. Our observations strengthen the case for a possible role of excited state formation in the biological activity butyrate. Energy transfer to chloroplasts Linear aldehydes trigger red emission from chloroplasts. If horseradish peroxidase is also present, the aldehyde is oxidized to the next lower homolog in the triplet state, which in turn sensitizes (directly or indirectly) chlorophyll fluorescence. This phenomenon probably is a case of \"dark luminescence\"; the chlorophyll excited by this process is unable to reduce a Hill acceptor. MIicrosomal luminescence elicited by enzymatic systems that generate triplet species. Microsomes exposed to the propanal/HRP/02 system develop a weak luminescence. The underlying process is distinct from that occuring during lipid peroxidation because the emission intensity peaks at around 560 nm rather than in the red (as would be expected for bimol singlet oxygen emission) and no malonaldehyde is formed. Triplet acetaldehyde appears to be responsible for initiating the process, which in turn leads to excitation of a component of microsomes, possibly a flavoprotein.
|
30 |
Développement et application de stratégies d’étude théorique de propriétés remarquables relatives aux états excités moléculaires / Development and application of theoretical strategies for the study of remarkable properties related to molecular excited statesEtienne, Thibaud 08 July 2015 (has links)
L’exploitation de méthodes théoriques dans le cadre de la modélisation de propriétés moléculaires remarquables s’est substantiellement développée lors des dernières décennies, notamment grâce au progrès des technologies informatiques qui rendent désormais accessibles certaines informations cruciales à nos recherches grâce au calcul intensif. Il est maintenant possible d’évaluer des propriétés et de résoudre des problèmes théoriques de haut niveau grâce aux ressources calculatoires actuelles. Dans ce cadre, la caractérisation par la mécanique quantique des états excités moléculaires constitue toujours un défi d’une très grande richesse suscitant un intérêt accru de la communauté de physique moléculaire théorique et expérimentale. Cette qualité s’accompagne d’une grande complexité d’étude, conséquence du nombre de phénomènes physiques caractérisant l’accès d’un système à ses états excités. Notre contribution s’inscrit dans ce contexte, puisque les études dont ce document fait état sont relatives à la rationalisation du comportement de chromophores face à la capture d’un photon. Cette interaction entre la lumière et la matière est rapportée à l’échelle moléculaire et décrite dans nos travaux par des méthodes quantiques en vue de comprendre les mécanismes inhérents aux propriétés caractéristiques de composés-cibles. Ces interprétations sont appuyées par des développements théoriques visant l’établissement ou la consolidation des outils conceptuels et mathématiques constitutifs de nos stratégies théoriques d’investigation des états excités. Les développements qui font l’objet de ce document portent principalement sur l’interaction des chromophores avec leur vicinité moléculaire traitée implicitement ou explicitement dans le cadre d’une résolution géométrique du spectre d’absorption électronique, ainsi que sur une approche quantitative de la réorganisation de la structure électronique d’un composé induite par l’absorption d’un photon. Les applications sont quant à elles relatives à des chromophores présentant des propriétés remarquables : sonde solvatochromique, sonde à explosifs, chromophore interagissant avec l’ADN, composés intervenant dans la constitution de cellules solaires de troisième génération, clusters multichromophores. / Exploiting theoretical methods for modeling remarkable molecular properties has extensively gained interest from the scientific community during the last few decades. The development of these methods has been made possible by the important technological progresses realized in the field of computational science. These advances made accessible some informations that are crucial to our current researches but hitherto impossible to compute. It is thus now possible to solve high-level theoretical issues and to access novel critical properties. Within this framework, quantum-mechanical characterization of molecular excited states still constitutes a challenging achievement with a considerable interest to the theoretical and experimental molecular physics community. However, these studies can be of extreme complexity, due to the interplay between numerous physical phenomena that characterize the access of a system to its own excited states. The scope of our contribution is closely related to these fundamental issues in the sense that we aim at rationalizing the behavior of chromophores facing a photon capture. This light-matter interaction is studied at the molecular level and is addressed in our work with quantum-mechanical methods in order to unravel the mechanisms inherent to the characteristic properties of target compounds. Those interpretations are supported by theoretical developments intending the establishment or consolidation of conceptual and mathematical tools constituting our theoretical strategy for excited states investigations. The aforementioned developments are mostly related to the interaction of chromophores with their molecular vicinity treated implicitely or explicitely, the latter playing an important role in our attempt to gain a geometrical resolution of electronic spectra with conformational space sampling methods. Our interest was also focused on the photoinduced electronic structure reorganization through the design of quantum-mechanical descriptors of excited states topology. On the other hand, applications were related to chromophores exhibiting remarkable molecular properties : solvatochromic probe, explosive probe, chromophore interacting with DNA, dyes designed for third-generation solar cells, multichromophoric clusters.
|
Page generated in 0.0444 seconds